An evolutionary-assisted machine learning model for global solar radiation prediction in Minas Gerais region, southeastern Brazil

被引:0
作者
Samuel da Costa Alves Basílio
Fernando Ferrari Putti
Angélica Carvalho Cunha
Leonardo Goliatt
机构
[1] Federal Center for Technological Education of Minas Gerais,Department of Computing and Mechanics
[2] Federal University of Juiz de Fora,Computational Modeling Program
[3] São Paulo State University,School of Sciences and Engineering
来源
Earth Science Informatics | 2023年 / 16卷
关键词
Solar radiation; Predictive model; Optimization algorithm; Hybrid approach;
D O I
暂无
中图分类号
学科分类号
摘要
Solar radiation prediction is necessary for designing photovoltaic systems, assessment of regional climate and crop growth modeling. However, this estimate depends on expensive devices, namely pyranometer and pyranometer. Considering the difficulty of acquiring these devices, predicting such values through mathematical and computational models is a convenient approach where costs can be reduced. In particular, machine learning methods have been successfully and widely applied for this task. However, the choice of the correct machine learning model, its parameters sets, and the variables used influence obtained results. This work presents a methodology that optimizes the aforementioned points to efficiently predict solar radiation in the state of Minas Gerais, Brazil. Currently, no work presents a computational model for the entire state. For this, data from 51 cities in Minas Gerais are used, obtained by the automatic weather stations of the National Institute of Meteorology. Two machine learning models, Artificial Neural Network and Multivariate Adaptive Regression Spline, were optimized through a Simple Genetic Algorithm, and the results compared to those available in the literature. The best results were found at the Guanhães station, with R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} of 0.867 and RMSE of 1.68 MJ m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} day-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}, and at the Muriaé station, with R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} of 0.864 and RMSE of 1.64 MJ m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} day-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. The models had their metrics compared to each other through the methodology of performance profiles, where the Multivariate Adaptive Regression Spline model proved to be more efficient. The results demonstrate that computational models perform better than the empirical models currently used.
引用
收藏
页码:2049 / 2067
页数:18
相关论文
共 52 条
[1]  
Attar NF(2022)Comprehensive review of solar radiation modeling based on artificial intelligence and optimization techniques: future concerns and considerations Clean Techn Environ Policy 5 2338-246
[2]  
Sattari MT(2020)A parallel global multiobjective framework for optimization: pagmo J Open Source Softw 33 238-188
[3]  
Prasad R(2018)Parametrization of models and use of estimated global solar radiation data in the irrigated rice yield simulation Rev Bras Meteorol 22 178-622
[4]  
Biscani F(2014)Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines Appl Soft Comput 7 603-1263
[5]  
Izzo D(2021)Performance and estimation of solar radiation models in state of minas gerais, brazil Model Earth Systems Environ 27 1260-213
[6]  
Castro JRd(2003)Estimativa da radiação solar global para a região de lavras, mg global solar radiation estimation in lavras region, mg Ciência e agrotecnologia 91 201-2045
[7]  
Cuadra SV(2002)Benchmarking optimization software with performance profiles Math Program 145 2034-697
[8]  
Pinto LB(2020)Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions Renew Energy 2019 9515430-2830
[9]  
Cheng MY(2019)Global Solar Radiation Models in Minas Gerais Southeastern Brazil. Adv Meteorol 17 684-98
[10]  
Cao MT(2019)Solar radiation prediction using machine learning techniques: A review IEEE Lat Am Trans 12 2825-288