Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part II: Influence of Processing Conditions on Densification and Properties

被引:0
作者
Dongming Liu
Yuhong Xiong
Troy D. Topping
Yizhang Zhou
Chris Haines
Joseph Paras
Darold Martin
Deepak Kapoor
Julie M. Schoenung
Enrique J. Lavernia
机构
[1] University of California,Department of Chemical Engineering and Materials Science
[2] Shandong University,Department of Materials Science and Engineering
[3] U.S. Army,undefined
[4] RDECOM-ARDEC,undefined
来源
Metallurgical and Materials Transactions A | 2012年 / 43卷
关键词
Sinter Temperature; Grain Boundary; Spark Plasma Sinter; Lattice Diffusion; Feedstock Powder;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, nanostructured Al 5083 powders, which were prepared via cryomilling, were consolidated using spark plasma sintering (SPS). The influence of processing conditions, e.g., the loading mode, starting microstructure (i.e., atomized vs cryomilled powders), sintering pressure, sintering temperature, and powder particle size on the consolidation response and associated mechanical properties were studied. Additionally, the mechanisms that govern densification during SPS were discussed also. The results reported herein suggest that the morphology and microstructure of the cryomilled powder resulted in an enhanced densification rate compared with that of atomized powder. The pressure-loading mode had a significant effect on the mechanical properties of the samples consolidated by SPS. The consolidated compact revealed differences in mechanical response when tested along the SPS loading axis and radial directions. Higher sintering pressures improved both the strength and ductility of the samples. The influence of grain size on diffusion was considered on the basis of available diffusion equations, and the results show that densification was attributed primarily to a plastic flow mechanism during the loading pressure period. Once the final pressure was applied, power law creep became the dominant densification mechanism. Higher sintering temperature improved the ductility of the consolidated compact at the expense of strength, whereas samples sintered at lower temperature exhibited brittle behavior. Finally, densification rate was found to be inversely proportional to the particle size.
引用
收藏
页码:340 / 350
页数:10
相关论文
共 77 条
[1]  
Lu K.(2008)undefined Int. Mater. Rev. 53 21-38
[2]  
Munir Z.A.(2006)undefined J. Mater. Sci. 41 763-77
[3]  
Anselmi-Tamburini U.(2006)undefined Metall. Mater. Trans. A 37A 1343-52
[4]  
Ohyanagi M.(2006)undefined JOM 58 56-61
[5]  
Zuniga A.(2007)undefined Powder Metall. 50 40-45
[6]  
Ajdelsztajn L.(2007)undefined J. Eur. Ceram. Soc. 27 2725-28
[7]  
Lavernia E.J.(1998)undefined J. Am. Ceram. Soc. 81 2458-60
[8]  
Newbery A.P.(2006)undefined J. Am. Ceram. Soc. 89 494-500
[9]  
Nutt S.R.(1993)undefined J. Am. Ceram. Soc. 76 2760-68
[10]  
Lavernia E.J.(2004)undefined Solid State Commun. 130 581-84