A note on solutions of a functional equation arising in a queuing model for a LAN gateway

被引:0
作者
Janusz Brzdęk
El-sayed El-hady
Wolfgang Förg-Rob
Zbigniew Leśniak
机构
[1] Pedagogical University,Department of Mathematics
[2] Suez Canal University,Faculty of Computers and Informatics
[3] University of Innsbruck,Institute of Mathematics
来源
Aequationes mathematicae | 2016年 / 90卷
关键词
Functional equation; queueing model; network gateway; boundary value problem; 30D05; 30E25; 39B32; 65Q20;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss some issues concerning solutions of the functional equation (M(x,y)-xy)P(x,y)=(1-y)(M(x,0)+r^1ξ2xy)P(x,0)+(1-x)(M(0,y)+r^2ξ1xy)P(0,y)-(1-x)(1-y)M(0,0)P(0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (M(x,y)-xy)P(x,y)=&\;(1-y)(M(x,0)+\widehat{r}_{1}\xi_{2}xy)P(x,0) \\ &+(1-x)(M(0,y)+\widehat{r}_{2}\xi_{1}xy)P(0,y)\\ &-(1-x)(1-y)M(0,0)P(0,0) \end{aligned}$$\end{document}in the class of analytic functions P mapping D¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{D}^2}$$\end{document}(D¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{D}}$$\end{document} stands for the closure of the unit disc D in the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document}) into C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document}. Here rj,sj∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r_j,s_j\in (0,1)}$$\end{document} for j=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j=1,2}$$\end{document} are fixed, ξj=rjsj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi_j=r_js_j}$$\end{document}, q^=1-q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{q}=1-q}$$\end{document} for every q∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \in \mathbb{R}}$$\end{document} and M(x,y)=(r^1+r1s^1y+ξ1xy)(r^2+r2s^2x+ξ2xy).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(x,y)=(\widehat{r}_{1}+r_{1} \widehat{s}_{1}y+\xi _{1}xy)(\widehat{r}_{2}+r_{2} \widehat{s}_{2}x+\xi _{2}xy).$$\end{document}The equation arises in a two-dimensional queueing model for a LAN gateway.
引用
收藏
页码:671 / 681
页数:10
相关论文
共 19 条
[1]  
Cohen J.W.(1988)Boundary value problems in queueing theory Queueing Syst. 3 97-128
[2]  
Malyshev V.A.(1972)An analytical method in the theory of two-dimensional positive random walks Sib. Math. J. 13 917-929
[3]  
Fayolle G.(1979)Two coupled processors: the reduction to a Riemann–Hilbert problem Z. für Wahrscheinlichkeitstheorie und verwandte Geb. 47 325-351
[4]  
Iasnogorodski R.(2015)On a two-variable functional equation arising from databases WSEAS Trans. Math. 14 265-270
[5]  
El-hady El-s.(2003)A tandem queueing model with coupled processors Oper. Res. Lett. 31 383-389
[6]  
Förg-Rob W.(1998)On the asymmetric clocked buffered switch Queueing Syst. 30 385-404
[7]  
Mahmoud M.(2011)Wireless multihop networks with stealing: large buffer asymptotics via the ray method SIAM J. Appl. Math. 71 1220-1240
[8]  
Resing J.(2011)Rare event asymptotics for a random walk in the quarter plane Queueing Syst. 67 1-32
[9]  
Örmeci L.(1984)Two parallel queues created by arrivals with two demands I SIAM J. Appl. Math. 44 1041-1053
[10]  
Cohen J.W.(1985)Two parallel queues created by arrivals with two demands II SIAM J. Appl. Math. 45 861-878