An Adaptive Differential Evolution Algorithm Based on New Diversity

被引:0
|
作者
Huan Lian
Yong Qin
Jing Liu
机构
[1] Tianjin Normal University,College of Mathematics Science
[2] Beijing Jiao Tong University,State Key Laboratory of Rail Traffic Control and Safety
[3] Beijing Institute of Technology,School of Mathematics
来源
International Journal of Computational Intelligence Systems | 2013年 / 6卷
关键词
Intelligent algorithm; Differential evolution; Population diversity; Adaptive parameter control;
D O I
暂无
中图分类号
学科分类号
摘要
A DE approach based on a new measure of population diversity and a novel parameter control mechanism is proposed with the aim of introducing a good behavior of the algorithm. The ratio of the new defined population diversity of different generations is equal to that of the population variance, therefore the adaption of parameter can use some theoretical results in19. Combining with the method in18, we can adjust the mutation factor F and the crossover rate CR at each generation in the searching process. The performance of the proposed algorithm (DE-F&CR) is compared to the basic DE and other four DE algorithms over 25 standard numerical benchmarks provided by the IEEE Congress on Evolutionary Computation 2005 special session on real parameter optimization. The results and its statistical analysis show that the DE-F&CR generally outperforms the other algorithms in multi-modal optimization.
引用
收藏
页码:1094 / 1107
页数:13
相关论文
共 50 条
  • [1] An Adaptive Differential Evolution Algorithm Based on New Diversity
    Lian, Huan
    Qin, Yong
    Liu, Jing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2013, 6 (06) : 1094 - 1107
  • [2] A new adaptive differential evolution optimization algorithm based on fuzzy inference system
    Salehpour, M.
    Jamali, A.
    Bagheri, A.
    Nariman-zadeh, N.
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2017, 20 (02): : 587 - 597
  • [3] Diversity-based adaptive differential evolution algorithm for multimodal optimization problems
    Li, Chao
    Zhai, Yuhan
    Palade, Vasile
    Fang, Wei
    Lu, Hengyang
    Mao, Li
    Sun, Jun
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 93
  • [4] A fitness-based adaptive differential evolution algorithm
    Xia, Xuewen
    Gui, Ling
    Zhang, Yinglong
    Xu, Xing
    Yu, Fei
    Wu, Hongrun
    Wei, Bo
    He, Guoliang
    Li, Yuanxiang
    Li, Kangshun
    INFORMATION SCIENCES, 2021, 549 : 116 - 141
  • [5] An adaptive differential evolution algorithm based on archive reuse
    Cui, Zhihua
    Zhao, Ben
    Zhao, Tianhao
    Cai, Xingjuan
    Chen, Jinjun
    INFORMATION SCIENCES, 2024, 668
  • [6] Parameter and strategy adaptive differential evolution algorithm based on accompanying evolution
    Wang, Minghao
    Ma, Yongjie
    Wang, Peidi
    INFORMATION SCIENCES, 2022, 607 : 1136 - 1157
  • [7] Integer Ambiguity Search Algorithm Based on Adaptive Differential Evolution Algorithm
    Dou, Zheng
    Wu, Yang
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [8] An improved adaptive differential evolution algorithm for continuous optimization
    Yi, Wenchao
    Zhou, Yinzhi
    Gao, Liang
    Li, Xinyu
    Mou, Jianhui
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 44 : 1 - 12
  • [9] Convergence Track Based Adaptive Differential Evolution Algorithm (CTbADE)
    Abbas, Qamar
    Malik, Khalid Mahmood
    Saudagar, Abdul Khader Jilani
    Khan, Muhammad Badruddin
    Abul Hasanat, Mozaherul Hoque
    AlTameem, Abdullah
    AlKhathami, Mohammed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 1229 - 1250
  • [10] Adaptive differential evolution algorithm based on dual experience combination
    Guo Z.
    Xiang C.
    Yang H.
    Zhang W.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52 (06): : 171 - 178