On the rate of convergence of iterated exponentials

被引:1
作者
Fuchang Gao
Lixing Han
Kenneth Schilling
机构
[1] Department of Mathematics, University of Idaho, Moscow
[2] Department of Mathematics, University of Michigan-Flint, Flint
关键词
Iterated exponentials; Rate of convergence;
D O I
10.1007/s12190-011-0511-2
中图分类号
学科分类号
摘要
We study the asymptotic rate of convergence of the sequence of iterated exponentials {z1=a, z n+1=a zn, n ≥ 1}. We show that z n converges at a linear rate if a is in the interior of the Baker-Rippon convergence region and at a sublinear rate if a is on its boundary. A precise characterization of the rate is explored when the sequence converges sublinearly. © 2011 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:89 / 96
页数:7
相关论文
共 11 条
  • [1] Anderson J., Iterated exponentials, American Mathematical Monthly, 111, 8, pp. 668-679, (2004)
  • [2] Baker I.N., Rippon P.J., Convergence of infinite exponentials, Ann. Acad. Sci. Fenn., 8, pp. 179-186, (1983)
  • [3] Carlsson A., On itererade Funktioner, (1907)
  • [4] Euler L., De formulis exponentialibus replicatus, Acta Sci. Petropol., 1, pp. 38-60, (1778)
  • [5] Galidakis I.N., On an application of Lambert's W function to infinite exponentials, Complex Variables, 49, 11, pp. 759-780, (2004)
  • [6] Knoebel R.A., Exponentals reiterated, Am. Math. Mon., 88, pp. 235-252, (1981)
  • [7] Shell D.L., On the convergence of infinite exponentials, Proc. Am. Math. Soc., 13, pp. 678-681, (1962)
  • [8] Stevic S., Asymptotic behaviour of a sequence defined by iteration, Mat. Vesnik, 48, 34, pp. 99-105, (1996)
  • [9] Stevic S., Asymptotic behaviour of a sequence defined by iteration with applications, Colloq. Math., 93, 2, pp. 267-276, (2002)
  • [10] Stevic S., Asymptotic behavior of a nonlinear difference equation, Indian Journal of Pure and Applied Mathematics, 34, 12, pp. 1681-1687, (2003)