Existence and general decay for nondissipative distributed systems with boundary frictional and memory dampings and acoustic boundary conditions

被引:0
|
作者
Wenjun Liu
Kewang Chen
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
35L70; 35B40; 93D15; Wave equation; Nondissipative distributed systems; General decay rate; Acoustic boundary conditions; Boundary dampings;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and general energy decay rate of global solutions for nondissipative distributed systems u′′-▵u+h(∇u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u''-\triangle u+h(\nabla u)=0$$\end{document}with boundary frictional and memory dampings and acoustic boundary conditions. For the existence of solutions, we prove the global existence of weak solution by using Faedo–Galerkin’s method and compactness arguments. For the energy decay rate, we first consider the general nonlinear case of h satisfying a smallness condition and prove the general energy decay rate by using perturbed modified energy method. Then, we consider the linear case of h: h(∇u)=-∇ϕ·∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h(\nabla u)=-\nabla\phi\cdot\nabla u}$$\end{document} and prove the general decay estimates of equivalent energy.
引用
收藏
页码:1595 / 1614
页数:19
相关论文
共 50 条