Multiplicity results for a fractional Kirchhoff equation involving sign-changing weight function

被引:0
作者
Chuanzhi Bai
机构
[1] Huaiyin Normal University,Department of Mathematics
来源
Boundary Value Problems | / 2016卷
关键词
fractional ; -Laplacian; Kirchhoff type problem; sign-changing weight; Nehari manifold; 35J50; 35J60; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and multiplicity of solutions for a fractional Kirchhoff equation involving a sign-changing weight function which generalizes the corresponding result of Tsung-fang Wu (Rocky Mt. J. Math. 39:995-1011, 2009). Our main results are based on the method of a Nehari manifold.
引用
收藏
相关论文
共 24 条
[1]  
Wu TF(2009)Multiplicity results for a semilinear elliptic equation involving sign-changing weight function Rocky Mt. J. Math. 39 995-1011
[2]  
Autuori G(2015)Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity Nonlinear Anal. 125 699-714
[3]  
Fiscella A(2011)The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions J. Differ. Equ. 250 1876-1908
[4]  
Pucci P(2014)A critical Kirchhoff type problem involving a nonlocal operator Nonlinear Anal. 94 156-170
[5]  
Chen CY(2016)Critical stationary Kirchhoff equations in Rev. Mat. Iberoam. 32 1-22
[6]  
Kuo YC(2015) involving nonlocal operators Calc. Var. Partial Differ. Equ. 54 2785-2806
[7]  
Wu TF(2015)Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional Adv. Pure Appl. Math. 136 521-573
[8]  
Fiscella A(2012)-Laplacian in Bull. Sci. Math. 127 703-726
[9]  
Valdinoci E(1997)Existence and multiplicity results for fractional Proc. R. Soc. Edinb. A 44 819-851
[10]  
Pucci P(1991)-Kirchhoff equation with sign changing nonlinearities Commun. Pure Appl. Math. 17 324-353