Finite groups with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal subgroups

被引:0
作者
Victor S. Monakhov
Viktoryia N. Kniahina
机构
[1] Department of Mathematics Gomel F. Scorina State University,
[2] Gomel Engineering Institute of MES of Belarus,undefined
关键词
Finite group; -subnormal subgroup; Supersolvable group; 2-Maximal subgroup; Primary subgroup; 20D20; 20E34;
D O I
10.1007/s11587-013-0153-9
中图分类号
学科分类号
摘要
A subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} of a group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} whenever either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=G$$\end{document} or there is a chain of subgroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=H_0\subset H_1\subset \cdots \subset H_n=G$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_i:H_{i-1}|$$\end{document} is a prime for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document}. In this paper we study groups with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal 2-maximal subgroups, and groups with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal primary cyclic subgroups.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 50 条
[22]   Finite Groups with Generalized Subnormal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-Critical Subgroups [J].
S. Wang ;
A. M. Liu ;
V. G. Safonov ;
A. N. Skiba .
Mathematical Notes, 2024, 116 (5) :934-941
[24]   On the Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi}$$\end{document}-property of subgroups of finite groups [J].
Adolfo Ballester-Bolinches ;
Paz Jiménez-Seral ;
Xianhua Li ;
Yangming Li .
Archiv der Mathematik, 2015, 105 (4) :301-305
[26]   Characterizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-Solvable Finite Groups [J].
W. Guo ;
Z. Wang ;
I. N. Safonova ;
A. N. Skiba .
Mathematical Notes, 2022, 111 (3-4) :534-543
[27]   On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-permutably embedded subgroups of finite groups [J].
A. Ballester-Bolinches ;
Yangming Li .
Monatshefte für Mathematik, 2013, 172 (3-4) :247-257
[28]   On n-σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma}$$\end{document}-embedded subgroups of finite groups [J].
C. Cao ;
M. T. Hussain ;
L. Zhang .
Acta Mathematica Hungarica, 2018, 155 (2) :502-517
[29]   A Generalization of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-Permutability [J].
Zhigang Wang ;
Jin Guo ;
Inna N. Safonova ;
Alexander N. Skiba .
Communications in Mathematics and Statistics, 2022, 10 (3) :565-579
[30]   Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document}-permutable subgroups of finite groups [J].
A. A. Heliel ;
A. Ballester-Bolinches ;
R. Esteban-Romero ;
M. O. Almestady .
Monatshefte für Mathematik, 2016, 179 (4) :523-534