Finite groups with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal subgroups

被引:0
作者
Victor S. Monakhov
Viktoryia N. Kniahina
机构
[1] Department of Mathematics Gomel F. Scorina State University,
[2] Gomel Engineering Institute of MES of Belarus,undefined
关键词
Finite group; -subnormal subgroup; Supersolvable group; 2-Maximal subgroup; Primary subgroup; 20D20; 20E34;
D O I
10.1007/s11587-013-0153-9
中图分类号
学科分类号
摘要
A subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} of a group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} whenever either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=G$$\end{document} or there is a chain of subgroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=H_0\subset H_1\subset \cdots \subset H_n=G$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_i:H_{i-1}|$$\end{document} is a prime for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document}. In this paper we study groups with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal 2-maximal subgroups, and groups with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P }$$\end{document}-subnormal primary cyclic subgroups.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 9 条
[1]  
Baer R(1959)Supersoluble immersion Can. J. Math. 11 353-369
[2]  
Doerk K(1966)Minimal nicht überauflösbare, endliche gruppen Math. Zeitschrift. 91 198-205
[3]  
Redei L(1956)Die endlichen einstufig nichtnilpotenten gruppen Publ. Math. Debrecen. 4 303-324
[4]  
Vasilyev AF(2010)On the finite groups of supersoluble type Sib. Math. J. 51 1004-1012
[5]  
Vasilyeva TI(2010)On finite groups similar to supersoluble groups Probl. phys. math. tech. 2 21-27
[6]  
Tyutyanov VN(undefined)undefined undefined undefined undefined-undefined
[7]  
Vasilyev A.F.(undefined)undefined undefined undefined undefined-undefined
[8]  
Vasilyeva T.I.(undefined)undefined undefined undefined undefined-undefined
[9]  
Tyutyanov V.N.(undefined)undefined undefined undefined undefined-undefined