Properly discontinuous group actions on affine homogeneous spaces

被引:0
作者
George Tomanov
机构
[1] Université Claude Bernard–Lyon 1,Institut Camille Jordan
[2] Bâtiment de Mathématiques,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2016年 / 292卷
关键词
STEKLOV Institute; Symmetric Space; Homogeneous Space; Algebraic Group; Linear Algebraic Group;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a real algebraic group, H ≤ G an algebraic subgroup containing a maximal reductive subgroup of G, and Γ a subgroup of G acting on G/H by left translations. We conjecture that Γ is virtually solvable provided its action on G/H is properly discontinuous and ΓG/H is compact, and we confirm this conjecture when G does not contain simple algebraic subgroups of rank ≥2. If the action of Γ on G/H (which is isomorphic to an affine linear space An) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for n ≤ 5.
引用
收藏
页码:260 / 271
页数:11
相关论文
共 41 条
  • [1] Abels H.(1995)Semigroups containing proximal linear maps Isr. J. Math. 91 1-30
  • [2] Margulis G. A.(2002)On the Zariski closure of the linear part of a properly discontinuous group of affine transformations J. Diff. Geom. 60 315-344
  • [3] Soifer G. A.(2011)The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant Geom. Dedicata 153 1-46
  • [4] Abels H.(1964)The structure of complete locally affine manifolds Topology 3 131-139
  • [5] Margulis G. A.(1996)Actions propres sur les espaces homogènes réductifs Ann. Math., Ser. 2 144 315-347
  • [6] Soifer G. A.(1997)Propriétés asymptotic des groupes linéaires Geom. Funct. Anal. 7 1-47
  • [7] Abels H.(1993)Sur les difféomorphismes d’Anosov affines a feuilletages stable et instable différentiables Invent. Math. 111 285-308
  • [8] Margulis G. A.(1971)Orbits of linear algebraic groups Ann. Math., Ser. 2 93 459-475
  • [9] Soifer G. A.(1968)Rationality properties of linear algebraic groups. II Thoku Math. J., Ser. 2 20 443-497
  • [10] Auslander L.(2015)Crystallographic actions on contractible algebraic manifolds Trans. Am. Math. Soc. 367 2765-2786