The Best Mixing Time for Random Walks on Trees

被引:0
作者
Andrew Beveridge
Jeanmarie Youngblood
机构
[1] Macalester College,Department of Mathematics, Statistics and Computer Science
[2] University of Minnesota,Department of Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Tree; Markov chain; Random walk; Stopping rule; Mixing time;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the extremal structures for mixing walks on trees that start from the most advantageous vertex. Let G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a tree with stationary distribution π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. For a vertex v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, let H(v,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(v,\pi )$$\end{document} denote the expected length of an optimal stopping rule from v to π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. The best mixing time for G is minv∈VH(v,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min _{v \in V} H(v,\pi )$$\end{document}. We show that among all trees with |V|=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V|=n$$\end{document}, the best mixing time is minimized uniquely by the star. For even n, the best mixing time is maximized by the uniquely path. Surprising, for odd n, the best mixing time is maximized uniquely by a path of length n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} with a single leaf adjacent to one central vertex.
引用
收藏
页码:2211 / 2239
页数:28
相关论文
共 12 条
  • [1] Aldous D(1997)Mixing times for uniformly ergodic Markov chains Stoch. Process. Appl. 71 165-185
  • [2] Lovász L(2009)Centers for random walks on trees SIAM J. Discrete Math. 23 300-318
  • [3] Winkler P(2013)Mixing times for random walks on trees Graph Combin. 29 757-772
  • [4] Beveridge A(2003)On playing golf with two balls SIAM J. Discrete Math. 16 604-615
  • [5] Beveridge A(1995)A tight lower bound on the cover time for random walks on graphs Random Struct. Algorithms 6 433-438
  • [6] Wang M(1998)Reversal of Markov chains and the forget time Combin. Probab. Comput. 7 189-204
  • [7] Dumitriu I(undefined)undefined undefined undefined undefined-undefined
  • [8] Tetali P(undefined)undefined undefined undefined undefined-undefined
  • [9] Winkler P(undefined)undefined undefined undefined undefined-undefined
  • [10] Feige U(undefined)undefined undefined undefined undefined-undefined