Maximum Matching in Regular and Almost Regular Graphs

被引:0
作者
Raphael Yuster
机构
[1] University of Haifa,Department of Mathematics
来源
Algorithmica | 2013年 / 66卷
关键词
Maximum matching; Regular graph; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We present an O(n2logn)-time algorithm that finds a maximum matching in a regular graph with n vertices. More generally, the algorithm runs in O(rn2logn) time if the difference between the maximum degree and the minimum degree is less than r. This running time is faster than applying the fastest known general matching algorithm that runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{n}m)$\end{document}-time for graphs with m edges, whenever m=ω(rn1.5logn).
引用
收藏
页码:87 / 92
页数:5
相关论文
共 15 条
  • [1] Cole R.(2001)Edge-coloring bipartite multigraphs in Combinatorica 21 5-12
  • [2] Ost K.(1965)( Can. J. Math. 17 449-467
  • [3] Schirra S.(1982)) time SIAM J. Comput. 11 117-853
  • [4] Edmonds J.(1991)Paths, trees, and flowers J. ACM 38 815-13
  • [5] Gabow H.N.(2010)Algorithms for edge coloring bipartite graphs and multigraphs ACM Trans. Algorithms (TALG) 6 1-109
  • [6] Kariv O.(1973)Faster scaling algorithms for general graph matching problems SIAM J. Comput. 2 225-30
  • [7] Gabow H.N.(1994)Perfect matchings via uniform sampling in regular bipartite graphs Combinatorica 14 71-undefined
  • [8] Tarjan R.E.(1964)An Diskretn. Anal. 3 23-undefined
  • [9] Goel A.(undefined) algorithm for maximum matchings in bipartite graphs undefined undefined undefined-undefined
  • [10] Kapralov M.(undefined)A theory of alternating paths and blossoms for proving correctness of the general graph maximum matching algorithm undefined undefined undefined-undefined