Some Ostrowski Type Inequalities for Double Integrals on Time Scales

被引:0
作者
Deepak B. Pachpatte
机构
[1] Dr. Babasaheb Ambedkar Marathwada University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2019年 / 161卷
关键词
Ostrowski inequality; Double integral; Time scales; 26E70; 34N05; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
The main objective of this paper is to study some Ostrowski type inequalities for double integrals on Time Scales. Some other interesting inequalities are also given.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 51 条
[1]  
Ahmad N.(2011)Some inequalities of Ostrowski and Gruss type for triple integrals on time scales Tamkang J. Math. 42 415-426
[2]  
Ullah R.(2011)Representations and Ostrowski type inequalities on time scales Comput. Math. Appl. 62 3933-3958
[3]  
Anastassiou G.(2006)An application of time scales to economics Math. Comput. Model. 43 718-726
[4]  
Atici F.(2012)Time scales Ostrowski and Gruss type inequalities involving three functions Nonlinear Dyn. Syst. Theory 12 119-135
[5]  
Biles D.(1990)Analysis on measure chain—a unified approach to continuous and discrete calculus Results Math. 18 18-56
[6]  
Lebedinsky A.(2011)Generalized double integral Ostrowski type inequality on time scales Appl. Math. Lett. 24 1461-1467
[7]  
Bohner E.(2014)Some new generalizations of Ostrowski type inequalities on time scales involving combination of J. Nonlinear Sci. Appl. 7 311-324
[8]  
Bohner M.(2014)-integral means Math. Probl. Eng. 2014 251-260
[9]  
Matthews T.(2015)Global exponential stability for DCNNs with impulses on time scales Appl. Math. Comput. 270 754-760
[10]  
Hilger S.(2008)Diamond- Appl. Math. Comput. 203 477-497