Quantized edge modes in atomic-scale point contacts in graphene

被引:0
作者
Kinikar, Amogh [1 ]
Sai, T. Phanindra [1 ]
Bhattacharyya, Semonti [1 ]
Agarwala, Adhip [1 ]
Biswas, Tathagata [1 ]
Sarker, Sanjoy K. [2 ]
Krishnamurthy, H. R. [1 ]
Jain, Manish [1 ]
Shenoy, Vijay B. [1 ]
Ghosh, Arindam [1 ,3 ]
机构
[1] Indian Inst Sci, Dept Phys, Bengaluru 560012, India
[2] Univ Alabama, Dept Phys, Tuscaloosa, AL 35487 USA
[3] Indian Inst Sci, Ctr Nano Sci & Engn, Bangalore 560012, Karnataka, India
基金
美国国家科学基金会;
关键词
CONDUCTANCE QUANTIZATION; CARBON NANOTUBES; NANORIBBONS; NANOCONSTRICTIONS; DEPENDENCE; STATE;
D O I
10.1038/NNANO.2017.24
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The zigzag edges of single-or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G(0) = 2e(2)/h. At the same time, conductance plateaux at G(0)/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.
引用
收藏
页码:564 / +
页数:6
相关论文
共 40 条
[1]  
Allen MT, 2016, NAT PHYS, V12, P128, DOI [10.1038/nphys3534, 10.1038/NPHYS3534]
[2]   Exceptional ballistic transport in epitaxial graphene nanoribbons [J].
Baringhaus, Jens ;
Ruan, Ming ;
Edler, Frederik ;
Tejeda, Antonio ;
Sicot, Muriel ;
Taleb-Ibrahimi, Amina ;
Li, An-Ping ;
Jiang, Zhigang ;
Conrad, Edward H. ;
Berger, Claire ;
Tegenkamp, Christoph ;
de Heer, Walt A. .
NATURE, 2014, 506 (7488) :349-354
[3]   Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate [J].
Bischoff, D. ;
Libisch, F. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2014, 90 (11)
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Localized states at zigzag edges of bilayer graphene [J].
Castro, Eduardo V. ;
Peres, N. M. R. ;
Lopes dos Santos, J. M. B. ;
Castro Neto, A. H. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[6]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[7]   Luttinger liquid at the edge of undoped graphene in a strong magnetic field [J].
Fertig, H. A. ;
Brey, L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)
[8]   Carbon nanotube quantum resistors [J].
Frank, S ;
Poncharal, P ;
Wang, ZL ;
de Heer, WA .
SCIENCE, 1998, 280 (5370) :1744-1746
[9]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[10]   Dynamic localization of two-dimensional electrons at mesoscopic length scales [J].
Ghosh, A ;
Pepper, M ;
Beere, HE ;
Ritchie, DA .
PHYSICAL REVIEW B, 2004, 70 (23) :1-4