Comparison between Merrifield-Simmons index and some vertex-degree-based topological indices

被引:0
作者
Hechao Liu
机构
[1] South China Normal University,School of Mathematical Sciences
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Merrifield-Simmons index; First Zagreb index; Second Zagreb index; Forgotten index; Comparison; 05C07; 05C09; 05C92;
D O I
暂无
中图分类号
学科分类号
摘要
The Merrifield-Simmons index (σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}) is an important molecular descriptor in chemical graph theory. Merrifield-Simmons index is defined as the total number of independent sets of the graph. The first Zagreb index (M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}$$\end{document}), second Zagreb index (M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}$$\end{document}), forgotten index (F) are another three important molecular descriptors in chemical graph theory, which often used to study molecular complexity, chirality, and other chemical properties. In this paper, we study the relationship between the Merrifield-Simmons index σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} and M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}$$\end{document} (resp. M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}$$\end{document}, F). We determine some sharp bounds on the difference between σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} and M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}$$\end{document} (resp. M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}$$\end{document}, F) for (connected) graphs, self-centered graphs, graphs with given independence number. We also compare σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} with M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}$$\end{document} (resp. M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}$$\end{document}, F) for (molecular) graphs, (molecular) trees, hexagonal chains, bipartite graphs, k-power graphs, graphs with given the number of cut vertices.
引用
收藏
相关论文
共 55 条
[1]  
An X(2008)The Wiener index of the kth power of a graph Appl Math Lett 21 436-440
[2]  
Wu B(1989)Self-centered graphs Ann NY Acad Sci 576 71-78
[3]  
Buckley F(2020)Extremal values of vertex-degree-based topological indices of chemical trees Appl Math Comput 380 125281-616
[4]  
Cruz R(2007)A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs MATCH Commun Math Comput Chem 57 597-91
[5]  
Monsalve J(2008)The Merrifield-Simmons index in ( J Math Chem 43 75-1190
[6]  
Rada J(2015))-graphs J Math Chem 53 1184-88
[7]  
Deng H(2014)A forgotten topological index Discrete Appl Math 178 83-988
[8]  
Deng H(2020)On difference of Zagreb indices Rocky Mt J Math 50 975-92
[9]  
Chen S(2004)On the reduced second Zagreb index of graphs MATCH Commun Math Comput Chem 50 83-538
[10]  
Zhang J(1972)The first Zagreb index 30 years after Chem Phys Lett 17 535-16