Multivalued Stochastic Differential Equations: Convergence of a Numerical Scheme

被引:0
|
作者
Frédéric Bernardin
机构
[1] URA 1652 CNRS,Département Génie Civil et Bâtiment, Laboratoire Géomatériaux, Ecole Nationale des Travaux Publics de l'Etat
[2] Université Claude Bernard Lyon I,UMR 5585 CNRS, MAPLY, Laboratoire de mathématiques appliquées de Lyon
来源
Set-Valued Analysis | 2003年 / 11卷
关键词
stochastic differential equations; maximal monotone operators; numerical scheme; Skorokhod problem; numerical experiments;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show the strong mean square convergence of a numerical scheme for a Rd-multivalued stochastic differential equation: dXt+A(Xt) dt∋b(t,Xt) dt+σ(t,Xt) dWt and obtain the rate of convergence O((δ log (1/δ)1/2) when the diffusion coefficient is bounded. By introducing a discrete Skorokhod problem, we establish Lp-estimates (p≥2) for the solutions and prove the convergence by using a deterministic result. Numerical experiments for the rate of convergence are presented.
引用
收藏
页码:393 / 415
页数:22
相关论文
共 50 条