Characterizations of variable exponent Hardy spaces via Riesz transforms

被引:0
作者
Dachun Yang
Ciqiang Zhuo
Eiichi Nakai
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Laboratory of Mathematics and Complex Systems,Department of Mathematics
[3] Ministry of Education,undefined
[4] Ibaraki University,undefined
来源
Revista Matemática Complutense | 2016年 / 29卷
关键词
Hardy space; Variable exponent; Riesz transform ; Harmonic function; Primary 42B30; Secondary 47B06; 42B35; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(·):Rn→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\ \mathbb R^n\rightarrow (0,\infty )$$\end{document} be a variable exponent function satisfying that there exists a constant p0∈(0,p-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_0\in (0,p_-)$$\end{document}, where p-:=essinfx∈Rnp(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_-:=\hbox {ess inf}_{x\in \mathbb R^n}p(x)$$\end{document}, such that the Hardy–Littlewood maximal operator is bounded on the variable exponent Lebesgue space Lp(·)/p0(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )/p_0}(\mathbb R^n)$$\end{document}. In this article, via investigating relations between boundary values of harmonic functions on the upper half space and elements of variable exponent Hardy spaces Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\mathbb R^n)$$\end{document} introduced by E. Nakai and Y. Sawano and, independently, by D. Cruz-Uribe and L.-A. D. Wang, the authors characterize Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\mathbb R^n)$$\end{document} via the first order Riesz transforms when p-∈(n-1n,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_-\in (\frac{n-1}{n},\infty )$$\end{document}, and via compositions of all the first order Riesz transforms when p-∈(0,n-1n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_-\in (0,\frac{n-1}{n})$$\end{document}.
引用
收藏
页码:245 / 270
页数:25
相关论文
共 34 条
[11]  
Nakai E(2014)Hardy spaces with variable exponents and generalized Campanato spaces Sci. China Math. 57 903-962
[12]  
Sawano Y(1973)Orlicz–Hardy spaces and their duals Proc. London Math. Soc. 3 243-260
[13]  
Ky LD(1931)On least harmonic majorants in half-spaces Studia Math. 3 200-211
[14]  
Muckenhoupt B(2008)Über konjugierte Exponentenfolgen Collect. Math. 59 299-320
[15]  
Wheeden RL(2013)Local Riesz transforms characterization of local Hardy spaces Integral Equ. Oper. Theory 77 123-148
[16]  
Müller S(1961)Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators Acta Math. 106 137-174
[17]  
Nakai E(1960)On the theory of harmonic functions of several variables. II. Behavior near the boundary Acta Math. 103 25-62
[18]  
Sawano Y(1968)On the theory of harmonic functions of several variables. I. The theory of Am. J. Math. 90 163-196
[19]  
Nakai E(1976)-spaces Enseign. Math. 2 121-134
[20]  
Sawano Y(2014)Generalization of the Cauchy–Riemann equations and representations of the rotation group Rev. Mat. Complut. 27 93-157