Characterizations of variable exponent Hardy spaces via Riesz transforms

被引:0
作者
Dachun Yang
Ciqiang Zhuo
Eiichi Nakai
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Laboratory of Mathematics and Complex Systems,Department of Mathematics
[3] Ministry of Education,undefined
[4] Ibaraki University,undefined
来源
Revista Matemática Complutense | 2016年 / 29卷
关键词
Hardy space; Variable exponent; Riesz transform ; Harmonic function; Primary 42B30; Secondary 47B06; 42B35; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(·):Rn→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\ \mathbb R^n\rightarrow (0,\infty )$$\end{document} be a variable exponent function satisfying that there exists a constant p0∈(0,p-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_0\in (0,p_-)$$\end{document}, where p-:=essinfx∈Rnp(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_-:=\hbox {ess inf}_{x\in \mathbb R^n}p(x)$$\end{document}, such that the Hardy–Littlewood maximal operator is bounded on the variable exponent Lebesgue space Lp(·)/p0(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )/p_0}(\mathbb R^n)$$\end{document}. In this article, via investigating relations between boundary values of harmonic functions on the upper half space and elements of variable exponent Hardy spaces Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\mathbb R^n)$$\end{document} introduced by E. Nakai and Y. Sawano and, independently, by D. Cruz-Uribe and L.-A. D. Wang, the authors characterize Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\mathbb R^n)$$\end{document} via the first order Riesz transforms when p-∈(n-1n,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_-\in (\frac{n-1}{n},\infty )$$\end{document}, and via compositions of all the first order Riesz transforms when p-∈(0,n-1n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_-\in (0,\frac{n-1}{n})$$\end{document}.
引用
收藏
页码:245 / 270
页数:25
相关论文
共 34 条
[1]  
Calderón A-P(1964)On higher gradients of harmonic functions Studia Math. 24 211-226
[2]  
Zygmund A(1977)Extensions of Hardy spaces and their use in analysis Bull. Amer. Math. Soc. 83 569-645
[3]  
Coifman RR(2014)Variable Hardy spaces Indiana Univ. Math. J. 63 447-493
[4]  
Weiss G(1972) spaces of several variables Acta Math. 129 137-193
[5]  
Cruz-Uribe D(1979)A local version of real Hardy spaces Duke Math. J. 46 27-42
[6]  
Wang L-AD(2014)Function spaces with variable exponents–an introduction– Sci. Math. Jpn. 77 187-315
[7]  
Fefferman C(2014)New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators Integral Equ. Oper. Theory 78 115-150
[8]  
Stein EM(1978)On the dual of weighted Studia Math. 63 57-79
[9]  
Goldberg D(1994) of the half-space Tatra Mt. Math. Publ. 4 159-168
[10]  
Izuki M(2012)Hardy space methods for nonlinear partial differential equations J. Funct. Anal. 262 3665-3748