Synthesis and evaluation of bile acid amides of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cyanostilbenes as anticancer agents

被引:0
作者
Devesh S. Agarwal
Rajnish Prakash Singh
K. Lohitesh
Prabhat N. Jha
Rajdeep Chowdhury
Rajeev Sakhuja
机构
[1] Birla Institute of Technology and Science,Department of Chemistry
[2] Birla Institute of Technology and Sciences,Department of Biological Sciences
关键词
Cancer; Bile acid; -cyanostilbene; Anticancer; Antibacterial;
D O I
10.1007/s11030-017-9797-9
中图分类号
学科分类号
摘要
A series of amino-substituted α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cyanostilbene derivatives and their bile acid (cholic and deoxycholic acid) amides were designed and synthesized. A comparative study on the anticancer and antibacterial activity evaluation on the synthesized analogs was carried against the human osteosarcoma (HOS) cancer cell line, and two gram −ve (E. coli and S. typhi) and two gram +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}ve (B. subtilis and S. aureus) bacterial strains. All the cholic acid α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cyanostilbene amides showed an IC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {IC}_{50}$$\end{document} in the range 2–13 μM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {M}$$\end{document} against human osteosarcoma cells (HOS) with the most active analog (6g) possessing an IC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {IC}_{50}$$\end{document} of 2μM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\,\upmu \hbox {M}$$\end{document}. One of the amino-substituted α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cyanostilbene, 4e, was found to possess an IC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {IC}_{50}$$\end{document} of 3μM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\,\upmu \hbox {M}$$\end{document}. An increase in the number of cells at the sub-G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {G}_{1}$$\end{document} phase of the cell was observed in the in vitro cell cycle analysis of two most active compounds in the series (4e, 6g) suggesting a clear indication toward induction of apoptotic cascade. With respect to antibacterial screening, amino-substituted α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cyanostilbenes were found to be more active than their corresponding bile acid amides. The synthesized compounds were also subjected to in silico study to predict their physiochemical properties and drug-likeness score.
引用
收藏
页码:305 / 321
页数:16
相关论文
共 228 条
[1]  
Chabner BA(2005)Chemotherapy and the war on cancer Nat Rev Cancer 5 65-72
[2]  
Roberts TG(2004)Drug delivery systems: entering the mainstream Science 303 1818-1822
[3]  
Allen TM(2005)The rise and rise of drug delivery Nat Rev Drug Discov 4 381-385
[4]  
Cullis PR(2006)Pharmacology of bile acids and their derivatives: absorption promoters and therapeutic agents Eur J Drug Metab Pharmacokinet 31 237-251
[5]  
Rosen H(2009)Evolving treatment of advanced colon cancer Annu Rev Med 60 207-219
[6]  
Abribat T(2010)Adjuvant therapy for colon cancer Surg Oncol Clin N Am 19 819-827
[7]  
Mikov M(2004)Chemistry and biology of bile acids Curr Sci 87 1666-1683
[8]  
Fawcett J(2004)Increased acyclovir oral bioavailability via a bile acid conjugate Mol Pharm 1 40-48
[9]  
Kuhajda K(2009)A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer Biomaterials 30 6006-6016
[10]  
Kevresan S(2013)Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy Bioconjug Chem 24 1468-1484