The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group

被引:0
作者
H. AlHussein
P. S. Kolesnikov
机构
[1] Novosibirsk State University,
[2] Sobolev Institute of Mathematics,undefined
来源
Siberian Mathematical Journal | 2020年 / 61卷
关键词
Hochschild cohomology; Anick resolution; Gröbner—Shirshov basis; Morse matching;
D O I
暂无
中图分类号
学科分类号
摘要
The Manturov (2, 3)-group G32 is the group generated by three elements a, b, and c with defining relations a2 = b2 = c2 = (abc)2 = 1. We explicitly calculate the Anick chain complex for G32 by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra kG32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k}G_3^2$$\end{document} with coefficients in all 1-dimensional bimodules over a field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k}$$\end{document} of characteristic zero.
引用
收藏
页码:11 / 20
页数:9
相关论文
共 8 条
[1]  
Anick D J(1986)On the homology of associative algebras Trans. Amer. Math. Soc. 296 641-659
[2]  
Forman R(1998)Morse theory for cell complexes Adv. Math. 134 90-145
[3]  
Manturov V O(2010)Parity in knot theory Mat. Sb. 201 65-110
[4]  
Manturov V O(2017)On groups Russian Math. Surveys 72 378-380
[5]  
Bokut L A(2014) and Coxeter groups Bull. Math. Sci. 4 325-395
[6]  
Chen Y(2006)Gröbner—Shirshov bases and their calculation Trans. Amer. Math. Soc. 358 115-129
[7]  
Sköldberg E(1976)Morse theory from an algebraic viewpoint Algebra and Logic 15 73-90
[8]  
Bokut’ L A(undefined)Embeddings into simple associative algebras undefined undefined undefined-undefined