On a projection least squares estimator for jump diffusion processes

被引:0
作者
Hélène Halconruy
Nicolas Marie
机构
[1] Léonard de Vinci Pôle universitaire,Laboratoire Modal’X
[2] Research Center,undefined
[3] Université Paris Nanterre,undefined
来源
Annals of the Institute of Statistical Mathematics | 2024年 / 76卷
关键词
Projection least squares estimator; Model selection; Jump diffusion processes;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a projection least squares estimator of the drift function of a jump diffusion process X computed from multiple independent copies of X observed on [0, T]. Risk bounds are established on this estimator and on an associated adaptive estimator. Finally, some numerical experiments are provided.
引用
收藏
页码:209 / 234
页数:25
相关论文
共 44 条
[1]  
Amorino C(2021)Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes Journal of Statistical Planning and Inference 213 106-129
[2]  
Gloter A(2022)On the nonparametric inference of coefficients of self-exciting jump-diffusion Electronic Journal of Statistics 16 3212-3277
[3]  
Amorino C(2019)Sobolev-Hermite versus Sobolev nonparametric density estimation on Annals of the Institute of Statistical Mathematics 71 29-62
[4]  
Dion-Blanc C(1983)Calcul de Malliavin pour les diffusions avec sauts : existence d’une densité dans le cas unidimensionnel Séminaire de Probabilités 17 132-157
[5]  
Gloter A(2017)Heat Kernels for nonsymmetric diffusion operators with jumps Journal of Differential Equations 263 6576-6634
[6]  
Lemler S(2019)Estimating Functions for SDE Driven by Stable Lévy Processes Annales de l’Institut Henri Poincaré (B) 55 1316-1348
[7]  
Belomestny D(2020)Joint estimation for sde driven by locally stable Lévy processes Electronic Journal of Statistics 14 2922-2956
[8]  
Comte F(2013)On the stability and accuracy of least squares approximations Foundations of Computational Mathematics 13 819-834
[9]  
Genon-Catalot V(2001)Adaptive estimation of the spectrum of a stationary Gaussian sequence Bernoulli 7 267-298
[10]  
Bichteler K(2020)Regression function estimation as a partly inverse problem Annals of the Institute of Statistical Mathematics 72 1023-1054