Prediction Model of Sulfide Capacity for CaO-FeO-Fe2O3-Al2O3-P2O5 Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

被引:0
作者
Xue-Min Yang
Jin-Yan Li
Meng Zhang
Guo-Min Chai
Jian Zhang
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering
[2] University of Science and Technology Beijing,School of Metallurgical and Ecological Engineering
[3] Chinese Academy of Sciences,Institute of Process Engineering
[4] China Metallurgical Group Corporation,Beijing Metallurgical Equipment Research & Design Institute Company Limited
[5] Shanxi Taigang Stainless Steel Corporation Limited,undefined
来源
Metallurgical and Materials Transactions B | 2014年 / 45卷
关键词
Sulfide Capacity; Large Variation Range; Molecule Coexistence Theory; Activator Mass Concentration; Desulfurization Mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
A thermodynamic model for predicting sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential pO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p_{{{\text{O}}_{ 2}}} $$\end{document} corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model has been verified through comparing the determined sulfide capacity CS2-,determined\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ determined}}}} $$\end{document} after Ban-ya et al.[20] with the calculated CS2-,calculatedIMCT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{\text{IMCT}} $$\end{document} by the developed IMCT-CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} model and the calculated CS2-,calculatedi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{ 2-} , {\text{ calculated}}}}^{i} $$\end{document} by the reported sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 -}}} $$\end{document} models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration NFetO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{t} {\text{O}}}} $$\end{document} of FetO as 0.0637 or oxygen partial pO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p_{{{\text{O}}_{2} }} $$\end{document} as 2.27 × 10−6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of NFeO/NCaO, NFe2O3/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{ 2} {\text{O}}_{ 3} }} /N_{\text{CaO}} $$\end{document}, NFeO·Fe2O3/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{FeO}} \cdot {\text{Fe}}_{2} {\text{O}}_{3} }} /N_{\text{CaO}} $$\end{document}, and NFetO/NCaO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{{{\text{Fe}}_{t} {\text{O}}}} /N_{\text{CaO}} $$\end{document}. Sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity CS2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_{{{\text{S}}^{2 - } }} $$\end{document} of the slags.
引用
收藏
页码:2118 / 2137
页数:19
相关论文
共 27 条
  • [21] Chloride capacities of CaO-SiO2-Al2O3(-FeO, MgO, MnO) slags and their application in the incineration processes
    Miwa, M
    Morita, K
    ISIJ INTERNATIONAL, 2002, 42 (10) : 1065 - 1070
  • [22] Sulfide Capacity of CaO–SiO2–MgO–Al2O3–BaO–Na2O Slag at 1773 K
    Wenguo Liu
    Yanbiao Chen
    Jingsong Wang
    Haibin Zuo
    Journal of Sustainable Metallurgy, 2021, 7 : 1169 - 1177
  • [23] Solubilities of Chlorine in CaO-SiO2-Al2O3-MgO Slags: Correlation Between Sulfide and Chloride Capacities
    Okeda, M.
    Hasegawa, M.
    Iwase, M.
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2011, 42 (02): : 281 - 290
  • [24] Solubilities of Chlorine in CaO-SiO2-Al2O3-MgO Slags: Correlation Between Sulfide and Chloride Capacities
    M. Okeda
    M. Hasegawa
    M. Iwase
    Metallurgical and Materials Transactions B, 2011, 42 : 281 - 290
  • [25] Sulfide Capacities of CaO-Al2O3-SiO2 Slags in the Temperature Range 1673 K to 1773 K (1400 °C to 1500 °C)
    Yoshinori Taniguchi
    Lijun Wang
    Nobuo Sano
    Seshadri Seetharaman
    Metallurgical and Materials Transactions B, 2012, 43 : 477 - 484
  • [26] Generation Mechanism of MgO and Al2O3 Inclusions in 51CrV4 Spring Steel Based on the Ion-Molecule Coexistence Theory
    Lei, Jialiu
    Zhu, Hangyu
    Zhao, Dongnan
    Xue, Zhengliang
    METALS, 2019, 9 (08)
  • [27] Desulphurisation of Stainless Steel by Using CaO-Al2O3 Based Slags during Secondary Metallurgy
    Yan, Pengcheng
    Guo, Xiaoling
    Huang, Shuigen
    Van Dyck, Joris
    Guo, Muxing
    Blanpain, Bart
    ISIJ INTERNATIONAL, 2013, 53 (03) : 459 - 467