Delay-Dependent Stability and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} Performance of 2-D Continuous Systems with Delays

被引:22
作者
Khalid Badie
Mohammed Alfidi
Fernando Tadeo
Zakaria Chalh
机构
[1] National School of Applied Sciences,Engineering, Systems and Applications Laboratory
[2] University of Valladolid,Industrial Engineering School
关键词
2-D state-delayed systems; Roesser model; Delay-dependent conditions; performance; Linear matrix inequality (LMI);
D O I
10.1007/s00034-018-0839-z
中图分类号
学科分类号
摘要
The analysis of stability and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance of two-dimensional (2-D) Roesser-like continuous systems with delayed states is solved here. Firstly, based on the delay partitioning method, and on the use of an auxiliary function-based integral inequality, a new delay-dependent sufficient condition for asymptotical stability of these systems is developed. Then, the obtained result is extended to H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance analysis, with all conditions formulated as linear matrix inequalities. Finally, some numerical examples are provided to demonstrate the effectiveness and benefits of the proposed methodology.
引用
收藏
页码:5333 / 5350
页数:17
相关论文
共 70 条
  • [1] Alfidi M(2007)Robust stability analysis for 2-D continuous systems via parameter-dependent Lyapunov functions WSEAS Trans. Syst. Control 2 497-503
  • [2] Hmamed A(2013)Delay-dependent stabilizability of 2D delayed continuous systems with saturating control Circuits Syst. Signal Process. 32 2723-2743
  • [3] Benhayoun M(2011)State-feedback stabilization of 2D continuous systems with delays Int. J. Innov. Comput. Inf. Control 7 977-988
  • [4] Mesquine F(2001) control and robust stabilization of two-dimensional systems in Roesser models Automatica 37 205-211
  • [5] Benzaouia A(2008)Constrained optimal control theory for differential linear repetitive processes SIAM J. Control Optim. 47 396-420
  • [6] Benzaouia A(2013)Robust Multidimens. Syst. Signal Process. 24 685-706
  • [7] Benhayoun M(2010) filtering for uncertain two-dimensional continuous systems with time-varying delays IET Control Theory Appl. 4 1959-1971
  • [8] Tadeo F(2017)Delay-dependent robust stability and stabilisation of uncertain two-dimensional discrete systems with time-varying delays IEEE Trans. Cybern. 47 661-670
  • [9] Du C(2015)Improved stability condition for Takagi-Sugeno fuzzy systems with time-varying delay Circuits Syst. Signal Process. 34 3489-3504
  • [10] Xie L(2016) performance analysis of 2D continuous time-varying delay systems Multidimens. Syst. Signal Process. 27 297-319