Normal bases of ray class fields over imaginary quadratic fields

被引:0
作者
Ho Yun Jung
Ja Kyung Koo
Dong Hwa Shin
机构
[1] KAIST,Department of Mathematical Sciences
来源
Mathematische Zeitschrift | 2012年 / 271卷
关键词
Class fields; Modular functions; Normal bases; 11F03; 11G16; 11R37; 11Y40;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a criterion for a normal basis (Theorem 2.4), and prove that the singular values of certain Siegel functions form normal bases of ray class fields over imaginary quadratic fields other than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}(\sqrt{-1})}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}(\sqrt{-3})}$$\end{document} (Theorem 4.2). This result would be an answer for the Lang-Schertz conjecture on a ray class field with modulus generated by an integer (≥2) (Remark 4.3).
引用
收藏
页码:109 / 116
页数:7
相关论文
共 11 条
[1]  
Gee A.(1999)Class invariants by Shimura’s reciprocity law J. Theor. Nombres Bordeaux 11 45-72
[2]  
Komatsu K.(2000)Construction of a normal basis by special values of Siegel modular functions Proc. Amer. Math. Soc. 128 315-323
[3]  
Koo J.K.(2010)On some arithmetic properties of Siegel functions Math. Zeit. 264 137-177
[4]  
Shin D.H.(1959)Über die Hauptordnung der ganzen elemente eines abelschen Zahlkörpers; J. Reine Angew. Math. 201 119-149
[5]  
Leopoldt H.W.(1980)On an extension of a theorem of S Chowla. Acta Arith. 38 341-345
[6]  
Okada T.(1980)Normal bases of class field over Gauss’ number field J. London Math. Soc. (2) 22 221-225
[7]  
Okada T.(1964)Some applications of Kronecker’s limit formula Ann. of Math. (2) 80 104-148
[8]  
Ramachandra K.(1991)Galoismodulstruktur und elliptische Funktionen J. Number Theor. 39 285-326
[9]  
Schertz R.(1997)Construction of ray class fields by elliptic units J. Theor. Nombres Bordeaux 9 383-394
[10]  
Schertz R.(1985)Relative Galois module structure of rings of integers and elliptic functions II Ann. of Math. (2) 121 519-535