Extremum of geometric functionals involving general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies

被引:0
作者
Weidong Wang
Jianye Wang
机构
[1] China Three Gorges University,Department of Mathematics
关键词
general ; -projection body; extremum; quermassintegral; dual quermassintegral; -dual affine surface area; 52A40; 52A20;
D O I
10.1186/s13660-016-1076-2
中图分类号
学科分类号
摘要
Following the discovery of general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies by Ludwig, Haberl and Schuster determined the extremum of the volume of the polars of this family of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies. In this paper, the result of Haberl and Schuster is extended to all dual quermassintegrals, and a dual counterpart for the quermassintegrals of general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies is also obtained. Moreover, the extremum of the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{q}$\end{document}-dual affine surface areas of polars of general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies are determined.
引用
收藏
相关论文
共 86 条
  • [61] Xiao J(undefined) equivariant Minkowski valuations undefined undefined undefined-undefined
  • [62] Parapatits L(undefined)Shadow systems of asymmetric undefined undefined undefined-undefined
  • [63] Parapatits L(undefined) zonotopes undefined undefined undefined-undefined
  • [64] Schuster FE(undefined)p-means of convex bodies undefined undefined undefined-undefined
  • [65] Wannerer T(undefined)The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas undefined undefined undefined-undefined
  • [66] Schuster FE(undefined)The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem undefined undefined undefined-undefined
  • [67] Weberndorfer M(undefined)Convolutions transforms and convex bodies undefined undefined undefined-undefined
  • [68] Wang WD(undefined)Large inequalities for undefined undefined undefined-undefined
  • [69] Li YN(undefined)-dual affine surface area undefined undefined undefined-undefined
  • [70] Wang WD(undefined)Dual mixed volumes undefined undefined undefined-undefined