Extremum of geometric functionals involving general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies

被引:0
作者
Weidong Wang
Jianye Wang
机构
[1] China Three Gorges University,Department of Mathematics
关键词
general ; -projection body; extremum; quermassintegral; dual quermassintegral; -dual affine surface area; 52A40; 52A20;
D O I
10.1186/s13660-016-1076-2
中图分类号
学科分类号
摘要
Following the discovery of general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies by Ludwig, Haberl and Schuster determined the extremum of the volume of the polars of this family of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies. In this paper, the result of Haberl and Schuster is extended to all dual quermassintegrals, and a dual counterpart for the quermassintegrals of general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies is also obtained. Moreover, the extremum of the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{q}$\end{document}-dual affine surface areas of polars of general Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-projection bodies are determined.
引用
收藏
相关论文
共 86 条
  • [1] Bolker ED(1969)A class of convex bodies Trans. Am. Math. Soc. 145 323-345
  • [2] Brannen NS(1996)Volumes of projection bodies Mathematika 43 255-264
  • [3] Chakerian GD(1997)Bodies with similar projections Trans. Am. Math. Soc. 349 1811-1820
  • [4] Lutwak E(2004)Inequalities for polars of mixed projection bodies Sci. China Ser. A 47 175-186
  • [5] Leng GS(1985)Mixed projection inequalities Trans. Am. Math. Soc. 287 91-106
  • [6] Zhao CJ(1993)Inequalities for mixed projection bodies Trans. Am. Math. Soc. 339 901-916
  • [7] He BW(1995)Petty’s projection inequality and Santaló’s affine isoperimetric inequality Geom. Dedic. 57 285-295
  • [8] Li XY(1991)Restricted chord projection and affine inequalities Geom. Dedic. 39 213-222
  • [9] Lutwak E(2000) affine isoperimetric inequalities J. Differ. Geom. 56 111-132
  • [10] Lutwak E(2002)Projection bodies and valuations Adv. Math. 172 158-168