Motor Algebra for 3D Kinematics: The Case of the Hand-Eye Calibration

被引:0
作者
Eduardo Bayro-Corrochano
Kostas Daniilidis
Gerald Sommer
机构
[1] Centro de Investigacion en Matemáticas,GRASP Laboratory
[2] Pennsylvania University,Computer Science Institute
[3] Christian Albrechts University,undefined
来源
Journal of Mathematical Imaging and Vision | 2000年 / 13卷
关键词
computer vision; kinematics; visual robotics; Clifford algebra; geometric algebra; rotors; motors; screws; hand-eye calibration;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we apply the Clifford geometric algebra for solving problems of visually guided robotics. In particular, using the algebra of motors we model the 3D rigid motion transformation of points, lines and planes useful for computer vision and robotics. The effectiveness of the Clifford algebra representation is illustrated by the example of the hand-eye calibration. It is shown that the problem of the hand-eye calibration is equivalent to the estimation of motion of lines. The authors developed a new linear algorithm which estimates simultaneously translation and rotation as components of rigid motion.
引用
收藏
页码:79 / 100
页数:21
相关论文
共 45 条
[1]  
Aspragathos N.A.(1998)A comparative study of three methods for robot kinematics IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 28 135-145
[2]  
Dimitros J.K.(1996)Selforganizing Clifford neural network Proceedings of the International Conference of Neural Networks, ICNN'96, Washington D.C., USA, June 3-6 1 120-125
[3]  
Bayro-Corrochano E.(1996)Geometric algebra: A framework for computing point and line correspondences and projective structure using IEEE Proceedings of ICPR'96 Viena, Austria, August I 334-338
[4]  
Buchholz S.(1991) uncalibrated cameras Mech. Mach. Theory 26 613-627
[5]  
Sommer G.(1991)Lie algebras, modules, dual quaternions and algebraic methods in kinematics Intern. Journal of Robotics Research 10 240-254
[6]  
Bayro-Corrochano E.(1873)Finding the position and orientation of a sensor on a robot manipulator using quaternions Proc. London Math. Soc. 4 381-395
[7]  
Lasenby J.(1878)Preliminary sketch of bi-quaternions Am. J. Math. 1 350-358
[8]  
Sommer G.(1996)Applications of Grassmann's extensive algebra IEEE Proceedings of the International Conference on Pattern Recognition ICPR'96, Viena, Austria, August I 318-322
[9]  
Chevalier D.P.(1983)The dual quaternion approach to hand-eye calibration Perception and Psychophysics 34 1-16
[10]  
Chou J.C.K.(1990)The Lie transformation group model of visual perception IEEE Transactions on Robotics and Automation 6 348-356