Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential

被引:0
作者
Jing Zhang
Qiongfen Zhang
机构
[1] Guilin University of Technology,College of Science
[2] Guangxi Colleges and Universities Key Laboratory of Applied Statistics,undefined
来源
Boundary Value Problems | / 2021卷
关键词
Ground state solution; Variable potential; Choquard equation; Critical point; 34C37; 35A15; 37J45; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we focus on the existence of solutions for the Choquard equation {−Δu+V(x)u=(Iα∗|u|αN+1)|u|αN−1u+λ|u|p−2u,x∈RN;u∈H1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ \end{document} where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} is a parameter, α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (0,N)$\end{document}, N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\ge 3$\end{document}, Iα:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$\end{document} is the Riesz potential. As usual, α/N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha /N+1$\end{document} is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if λ>λ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >\lambda _{*}$\end{document} for some given number λ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{*}$\end{document} in three cases: (i) 2<p<4N+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< p<\frac{4}{N}+2$\end{document}, (ii) p=4N+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=\frac{4}{N}+2$\end{document}, and (iii) 4N+2<p<2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4}{N}+2< p<2^{*}$\end{document}. Our result improves the previous related ones in the literature.
引用
收藏
相关论文
共 65 条
  • [1] Moroz I.M.(1998)Spherically-symmetric solutions of the Schrödinger–Newton equations Class. Quantum Gravity 15 2733-2742
  • [2] Penrose R.(2014)The Schrödinger–Newton equation and its foundations New J. Phys. 16 973-1009
  • [3] Tod P.(2010)Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities Proc. R. Soc. Edinb. A 140 199-202
  • [4] Bahrami M.(1984)Gravitation and quantum-mechanical localization of macro-objects Phys. Lett. A 105 93-105
  • [5] Großardt A.(1976)Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation Stud. Appl. Math. 57 1063-1072
  • [6] Donadi S.(1980)The Choquard equation and related questions Nonlinear Anal., Theory Methods Appl. 4 109-145
  • [7] Bassi A.(1984)The concentration-compactness principle in the calculus of variations. The locally compact case Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 153-184
  • [8] Cingolani S.(2013)Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics J. Funct. Anal. 265 1184-1202
  • [9] Secchi S.(2018)Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent J. Math. Anal. Appl. 464 437-477
  • [10] Squassina M.(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Commun. Pure Appl. Math. 36 1006-1041