Examples of Ricci-Mean Curvature Flows

被引:0
|
作者
Hikaru Yamamoto
机构
[1] Tokyo University of Science,Department of Mathematics, Faculty of Science
来源
The Journal of Geometric Analysis | 2018年 / 28卷
关键词
Mean curvature flow; Self-similar solution; Ricci flow; Ricci soliton; 53C42; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Let π:P(O(0)⊕O(k))→Pn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :{\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\rightarrow {\mathbb {P}}^{n-1}$$\end{document} be a projective bundle over Pn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^{n-1}$$\end{document} with 1≤k≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k \le n-1$$\end{document}. We denote P(O(0)⊕O(k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))$$\end{document} by Nkn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{k}^{n}$$\end{document} and endow it with the U(n)-invariant gradient shrinking Kähler Ricci soliton structure constructed by Cao (Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, 1996) and Koiso (Recent topics in differential and analytic geometry. Advanced studies in pure mathematics, Boston, 1990). In this paper, we show that lens space L(k;1)(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(k\, ;1)(r)$$\end{document} with radius r embedded in Nkn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{k}^{n}$$\end{document} is a self-similar solution. We also prove that there exists a pair of critical radii r1<r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{1}<r_{2}$$\end{document}, which satisfies the following. The lens space L(k;1)(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(k\, ;1)(r)$$\end{document} is a self-shrinker if r<r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r<r_{2}$$\end{document} and self-expander if r2<r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{2}<r$$\end{document}, and the Ricci-mean curvature flow emanating from L(k;1)(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(k\, ;1)(r)$$\end{document} collapses to the 0-section of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} if r<r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r<r_{1}$$\end{document} and to the ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-section of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} if r1<r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{1}<r$$\end{document}. This paper gives explicit examples of Ricci-mean curvature flows.
引用
收藏
页码:983 / 1004
页数:21
相关论文
共 50 条
  • [1] Examples of Ricci-Mean Curvature Flows
    Yamamoto, Hikaru
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 983 - 1004
  • [2] RICCI-MEAN CURVATURE FLOWS IN GRADIENT SHRINKING RICCI SOLITONS
    Yamamoto, Hikaru
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (01) : 77 - 94
  • [3] Gauss maps of the Ricci-mean curvature flow
    Naoyuki Koike
    Hikaru Yamamoto
    Geometriae Dedicata, 2018, 194 : 169 - 185
  • [4] Gauss maps of the Ricci-mean curvature flow
    Koike, Naoyuki
    Yamamoto, Hikaru
    GEOMETRIAE DEDICATA, 2018, 194 (01) : 169 - 185
  • [5] Ricci flows with unbounded curvature
    Giesen, Gregor
    Topping, Peter M.
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (1-2) : 449 - 460
  • [6] Ricci flows with unbounded curvature
    Gregor Giesen
    Peter M. Topping
    Mathematische Zeitschrift, 2013, 273 : 449 - 460
  • [7] Ricci flows with unbounded curvature
    Topping, Peter M.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 1033 - 1048
  • [8] A Note on the Mean Curvature Flow Coupled to the Ricci Flow
    Hongxin Guo
    Zhenxiao Ju
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 95 - 101
  • [9] A Note on the Mean Curvature Flow Coupled to the Ricci Flow
    Guo, Hongxin
    Ju, Zhenxiao
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (1-2) : 95 - 101
  • [10] Ricci flows with bursts of unbounded curvature
    Giesen, Gregor
    Topping, Peter M.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (05) : 854 - 876