Holomorphic Relative Hopf Modules over the Irreducible Quantum Flag Manifolds

被引:0
作者
Fredy Díaz García
Andrey Krutov
Réamonn Ó Buachalla
Petr Somberg
Karen R. Strung
机构
[1] Universidad Nacional Autónoma de México,Centro de Ciencias Matemáticas
[2] University of Zagreb,Department of Mathematics
[3] Czech Academy of Sciences,Institute of Mathematics
[4] Independent University of Moscow,Département de Mathématiques, Faculté des sciences
[5] Université Libre de Bruxelles,undefined
[6] Mathematical Institute of Charles University,undefined
来源
Letters in Mathematical Physics | 2021年 / 111卷
关键词
Quantum groups; Noncommutative geometry; Quantum principal bundles; Quantum flag manifolds; Complex geometry; Holomorphic vector bundles; 46L87; 81R60; 81R50; 17B37; 16T05;
D O I
暂无
中图分类号
学科分类号
摘要
We construct covariant q-deformed holomorphic structures for all finitely generated relative Hopf modules over the irreducible quantum flag manifolds endowed with their Heckenberger–Kolb calculi. In the classical limit, these reduce to modules of sections of holomorphic homogeneous vector bundles over irreducible flag manifolds. For the case of simple relative Hopf modules, we show that this covariant holomorphic structure is unique. This generalises earlier work of Majid, Khalkhali, Landi, and van Suijlekom for line modules of the Podleś sphere, and subsequent work of Khalkhali and Moatadelro for general quantum projective space.
引用
收藏
相关论文
共 30 条
  • [1] Beggs E(2017)Spectral triples from bimodule connections and Chern connections J. Noncommut. Geom. 11 669-701
  • [2] Majid S(2013)Noncommutative complex differential geometry J. Geom. Phys. 72 7-33
  • [3] Beggs E(1957)Homogeneous vector bundles Ann. Math 66 203-248
  • [4] Smith PS(2004)The Chern–Galois character C. R. Math. Acad. Sci. Paris 338 113-116
  • [5] Bott R(2000)Quantum geometry of algebra factorisations and coalgebra bundles Commun. Math. Phys. 213 491-521
  • [6] Brzeziński T(1995)The local index formula in noncommutative geometry Geom. Funct. Anal. 5 174-243
  • [7] Hajac PM(2010)Dirac operators on quantum projective spaces Commun. Math. Phys 295 731-790
  • [8] Brzeziński T(2004)The locally finite part of the dual coalgebra of quantized irreducible flag manifolds Proc. London Math. Soc 89 457-484
  • [9] Majid S(1986)A Lett. Math. Phys. 11 247-252
  • [10] Connes A(2011)-analogue of J. Geom. Phys. 61 2436-2452