An analogue of Weil’s converse theorem for harmonic Maass forms of polynomial growth

被引:0
作者
Karam Deo Shankhadhar
Ranveer Kumar Singh
机构
[1] Indian Institute of Science Education and Research Bhopal,Department of Mathematics
[2] Rutgers University,NHETC, Department of Physics and Astronomy
来源
Research in Number Theory | 2022年 / 8卷
关键词
Harmonic Maass forms; Differential operators; Dirichlet series; Converse theorem; Primary 11F12; 11F25; Secondary 11F66; 11M36;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a family of harmonic Maass forms of polynomial growth of any level corresponding to any cusp whose shadows are Eisenstein series of integral weight. We further consider Dirichlet series attached to a harmonic Maass form of polynomial growth, study its analytic properties, and prove an analogue of Weil’s converse theorem.
引用
收藏
相关论文
共 23 条
  • [1] Bringmann K(2012)Coefficients of harmonic Maass forms, partitions, Dev. Math. 23 23-38
  • [2] Ono K(2004)-series, and modular forms Duke Math. J. 125 45-90
  • [3] Bruinier JH(1994)On two geometric theta lifts Inst. Hautes Études Sci. Publ. Math. 79 157-214
  • [4] Funke J(1936)Converse theorems for Math. Ann. 112 664-699
  • [5] Cogdell J(2016)Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung J. Number Theory 169 41-61
  • [6] Piatetski-Shapiro I(2020)A converse theorem for Jacobi-Maass forms and applications Math. Res. Lett. 27 435-463
  • [7] Hecke E(1979)Mock modular forms whose shadows are Eisenstein series of integral weight Ann. Math. 109 169-212
  • [8] Herrero S(2019)Automorphic forms on Acta Arith. 189 223-262
  • [9] Herrero S(1949) I Math. Ann. 121 141-183
  • [10] Pippich AV(1996)A converse theorem for Jacobi cusp forms of degree two J. Number Theory 61 181-193