New travelling wave solutions for nonlinear stochastic evolution equations

被引:0
作者
HYUNSOO KIM
RATHINASAMY SAKTHIVEL
机构
[1] Kyung Hee University,College of Applied Science
[2] Sungkyunkwan University,Department of Mathematics
来源
Pramana | 2013年 / 80卷
关键词
(2 + 1)-dimensional stochastic Broer–Kaup equation; stochastic coupled KdV equation; -expansion method; travelling wave solutions; 02.30.lk; 02.30.Jr;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left({G^{\prime}}/{G}\right)$\end{document}-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.
引用
收藏
页码:917 / 931
页数:14
相关论文
共 60 条
[1]  
Ravi Kanth ASV(2008)undefined Phys. Lett. A 372 6896-undefined
[2]  
Aruna K(2009)undefined Comput. Phys. Commun. 180 708-undefined
[3]  
Ravi Kanth ASV(2009)undefined Commun. Nonlinear. Sci. Numer. Simulat. 14 443-undefined
[4]  
Aruna K(2010)undefined Z. Naturforsch. A (Journal of Physical Sciences) 65 633-undefined
[5]  
Wazzan Luwai(2009)undefined Int. J. Nonlin. Sci. Numer. Simulat. 10 675-undefined
[6]  
Sakthivel R(2007)undefined Chaos, Solitons and Fractals 34 1421-undefined
[7]  
Chun C(2011)undefined Pramana – J. Phys. 76 819-undefined
[8]  
Lee J(2012)undefined Comput. Appl. Math. 31 1-undefined
[9]  
Dai C. -Q(2007)undefined J. Comput. Appl. Math. 207 3-undefined
[10]  
Zhang J. -F(2009)undefined Z. Naturforsch. A 64 411-undefined