An ultimate extremely accurate formula for approximation of the factorial function

被引:0
作者
Cristinel Mortici
机构
[1] Valahia University of Târgovişte,Department of Mathematics, Faculty of Sciences and Arts
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary: 40A25; Secondary 26D07; Factorial function; Gamma function; Digamma function; Numeric series; Stirling’s formula; Burnside’s formula and inequalities;
D O I
暂无
中图分类号
学科分类号
摘要
We prove in this paper that for every x ≥ 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2\pi e}\cdot e^{-\omega}\left( \frac{x+\omega}{e}\right) ^{x+\frac {1}{2}} < \Gamma(x+1)\leq\alpha\cdot\sqrt{2\pi e}\cdot e^{-\omega}\left( \frac{x+\omega}{e}\right)^{x+\frac{1}{2}}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega=(3-\sqrt{3})/6}$$\end{document} and α = 1.072042464..., then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta\cdot\sqrt{2\pi e}\cdot e^{-\zeta}\left(\frac{x+\zeta}{e}\right)^{x+\frac{1}{2}}\leq\Gamma(x+1) < \sqrt{2\pi e}\cdot e^{-\zeta}\left( \frac{x+\zeta}{e}\right)^{x+\frac{1}{2}},$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\zeta=(3+\sqrt{3})/6}$$\end{document} and β = 0.988503589... Besides the simplicity, our new formulas are very accurate, if we take into account that they are much stronger than Burnside’s formula, which is considered one of the best approximation formulas ever known having a simple form.
引用
收藏
页码:37 / 45
页数:8
相关论文
共 7 条
  • [1] Batir N.(2008)Sharp inequalities for factorial Proyecciones 27 97-102
  • [2] Batir N.(2008)Inequalities for the gamma function Arch. Math. 91 554-563
  • [3] Burnside W.(1917)A rapidly convergent series for log Messenger Math. 46 157-159
  • [4] Hsu L.C.(1997)! J. Math. Res. Exposition 17 5-7
  • [5] Sandor J.(2000)A new constructive proof of the Stirling formula Math. Anal. Appl. 249 569-582
  • [6] Debnath L.(2001)On certain inequalities involving the constant Arch. Math. 77 170-176
  • [7] Schuster W.(undefined) and their applications, J undefined undefined undefined-undefined