Cleaning Random d-Regular Graphs with Brooms

被引:0
作者
Paweł Prałat
机构
[1] West Virginia University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Cleaning with brushes; Cleaning with Brooms; Random ; -regular graphs; Differential equations method; Graph searching;
D O I
暂无
中图分类号
学科分类号
摘要
A model for cleaning a graph with brushes was recently introduced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}$$\end{document} ; finally let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}$$\end{document}. The Broom number is given by B(G) =  maxαbα(G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(d+2\sqrt{d \ln 2})/4}$$\end{document} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{4}(d+\Theta(\sqrt{d}))}$$\end{document}.
引用
收藏
页码:567 / 584
页数:17
相关论文
共 50 条
  • [41] Random planar graphs
    McDiarmid, C
    Steger, A
    Welsh, DJA
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) : 187 - 205
  • [42] Clustering with r-regular graphs
    Kim, Jong Kyoung
    Choi, Seungjin
    PATTERN RECOGNITION, 2009, 42 (09) : 2020 - 2028
  • [43] On regular graphs with four distinct eigenvalues
    Huang, Xueyi
    Huang, Qiongxiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 219 - 233
  • [44] On graphs without crowns with regular μ-subgraphs
    Kabanov, VV
    MATHEMATICAL NOTES, 2000, 67 (5-6) : 736 - 742
  • [45] On packing Hamilton cycles in ε-regular graphs
    Frieze, A
    Krivelevich, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 159 - 172
  • [46] Circular Chromatic Indices of Regular Graphs
    Lin, Cheyu
    Wong, Tsai-Lien
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2014, 76 (03) : 169 - 193
  • [47] Eigenvalues and [ a , b ]-factors in regular graphs
    Suil, O.
    JOURNAL OF GRAPH THEORY, 2022, 100 (03) : 458 - 469
  • [48] On graphs without crowns with regularμ-subgraphs
    V. V. Kabanov
    Mathematical Notes, 2000, 67 : 736 - 742
  • [49] A family of regular graphs of girth 5
    Abreu, M.
    Funk, M.
    Labbate, D.
    Napolitano, V.
    DISCRETE MATHEMATICS, 2008, 308 (10) : 1810 - 1815
  • [50] Efficient edge domination in regular graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Delorme, Charles
    Silva, Pedro C.
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 3060 - 3065