Cleaning Random d-Regular Graphs with Brooms

被引:0
作者
Paweł Prałat
机构
[1] West Virginia University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Cleaning with brushes; Cleaning with Brooms; Random ; -regular graphs; Differential equations method; Graph searching;
D O I
暂无
中图分类号
学科分类号
摘要
A model for cleaning a graph with brushes was recently introduced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}$$\end{document} ; finally let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}$$\end{document}. The Broom number is given by B(G) =  maxαbα(G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(d+2\sqrt{d \ln 2})/4}$$\end{document} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{4}(d+\Theta(\sqrt{d}))}$$\end{document}.
引用
收藏
页码:567 / 584
页数:17
相关论文
共 50 条
  • [31] Alliance polynomial of regular graphs
    Carballosa, Walter
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Torres-Nunez, Yadira
    DISCRETE APPLIED MATHEMATICS, 2017, 225 : 22 - 32
  • [32] Counting triangles in regular graphs
    He, Jialin
    Hou, Xinmin
    Ma, Jie
    Xie, Tianying
    JOURNAL OF GRAPH THEORY, 2024, 107 (04) : 759 - 777
  • [33] A Triangle Process on Regular Graphs
    Cooper, Colin
    Dyer, Martin
    Greenhill, Catherine
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 310 - 323
  • [34] Hamiltonicity in connected regular graphs
    Cranston, Daniel W.
    Suil, O.
    INFORMATION PROCESSING LETTERS, 2013, 113 (22-24) : 858 - 860
  • [35] Double Coalitions in Regular Graphs
    Michael A. Henning
    Doost Ali Mojdeh
    Graphs and Combinatorics, 2025, 41 (4)
  • [36] Star colouring of bounded degree graphs and regular graphs
    Shalu, M. A.
    Antony, Cyriac
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [37] A characterization of graphs with regular distance-2 graphs
    Gaar, Elisabeth
    Krenn, Daniel
    DISCRETE APPLIED MATHEMATICS, 2023, 324 : 181 - 218
  • [38] Spectra and energies of iterated line graphs of regular graphs
    Ramane, HS
    Walikar, HB
    Rao, SB
    Acharya, BD
    Hampiholi, PR
    Jog, SR
    Gutman, I
    APPLIED MATHEMATICS LETTERS, 2005, 18 (06) : 679 - 682
  • [39] Random walks on random simple graphs
    Hildebrand, M
    RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (04) : 301 - 318
  • [40] Star Colouring of Regular Graphs Meets Weaving and Line Graphs
    Shalu, M. A.
    Antony, Cyriac
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 313 - 327