Cleaning Random d-Regular Graphs with Brooms

被引:0
作者
Paweł Prałat
机构
[1] West Virginia University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Cleaning with brushes; Cleaning with Brooms; Random ; -regular graphs; Differential equations method; Graph searching;
D O I
暂无
中图分类号
学科分类号
摘要
A model for cleaning a graph with brushes was recently introduced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}$$\end{document} ; finally let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}$$\end{document}. The Broom number is given by B(G) =  maxαbα(G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(d+2\sqrt{d \ln 2})/4}$$\end{document} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{4}(d+\Theta(\sqrt{d}))}$$\end{document}.
引用
收藏
页码:567 / 584
页数:17
相关论文
共 50 条
  • [21] Maximum matchings in regular graphs
    Ye, Dong
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1195 - 1198
  • [22] On the minimum energy of regular graphs
    Aashtab, A.
    Akbari, S.
    Ghasemian, E.
    Ghodrati, A. H.
    Hosseinzadeh, M. A.
    Koorepazan-Moftakhar, F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 51 - 71
  • [23] Regular Graphs Factorization for Partitioning
    Mahdavinia, M.
    Esmaeely, Y. Navabzadeh
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [24] Regular integral sum graphs
    Melnikov, LS
    Pyatkin, AV
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 237 - 245
  • [25] On independent domination of regular graphs
    Cho, Eun-Kyung
    Choi, Ilkyoo
    Park, Boram
    JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 159 - 170
  • [26] A Note on Regular Ramsey Graphs
    Alon, Noga
    Ben-Shimon, Sonny
    Krivelevich, Michael
    JOURNAL OF GRAPH THEORY, 2010, 64 (03) : 244 - 249
  • [27] Gromov Hyperbolicity of Regular Graphs
    Carlos Hernandez-Gomez, J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Torres-Nunez, Yadira
    Villeta, Maria
    ARS COMBINATORIA, 2017, 130 : 395 - 416
  • [28] Connected domination of regular graphs
    Duckworth, W.
    Mans, B.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2305 - 2322
  • [29] Walks and regular integral graphs
    Stevanovic, Dragan
    de Abreu, Nair M. M.
    de Freitas, Maria A. A.
    Del-Vecchio, Renata
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 119 - 135
  • [30] The connectivity indices of regular graphs
    Nikolic, S
    Trinajstic, N
    Ivanis, S
    CROATICA CHEMICA ACTA, 1999, 72 (04) : 875 - 883