Modeling Epidemics: Neural Network Based on Data and SIR-Model

被引:0
作者
O. I. Krivorotko
N. Yu. Zyatkov
S. I. Kabanikhin
机构
[1] Sobolev Institute of Mathematics,
[2] Siberian Branch of the Russian Academy of Sciences,undefined
来源
Computational Mathematics and Mathematical Physics | 2023年 / 63卷
关键词
epidemiology; time series; machine learning; deep learning; data processing; recurrent neural networks; fully connected neural networks; COVID-19; prediction; forcasting;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1929 / 1941
页数:12
相关论文
共 28 条
  • [1] Jie Gui(2023)Auto-encoders in deep learning – a review with new perspectives Mathematics 11 1-54
  • [2] Sun Zhenan(2023)A review on generative adversarial networks: Algorithms, theory, and applications IEEE Trans. Knowl. Data Eng. 35 3313-3332
  • [3] Wen Yonggang(2016)Physics-informed machine learning: A new paradigm for computational mechanics Comput. Meth. Appl. Mech. Eng. 309 209-233
  • [4] Tao Dacheng(2018)Data-driven vs. physics-based modeling: A comparison from an industrial perspective Chemic. Eng. Sci. 182 80-93
  • [5] Jieping Ye.(2016)Discovering governing equations from data by sparse identification of nonlinear dynamical systems Proc. Nation. Acad. Sci. 113 3932-3937
  • [6] Ling J.(2021)Spatio-temporal prediction of the COVID-19 pandemic in US counties: Modeling with a deep LSTM neural network Sci. Rep. 11 21715-50
  • [7] Jones R.(2022)Dynamics of “imperial tails” on the example of coronavirus infection Dal’nevost. Mat. Zh. 22 38-414
  • [8] Templeton J.(2020)Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region Numer. Anal. Appl. 13 395-68
  • [9] Leyva-Vallina M.(2022)Data-driven regularization of inverse problem for SEIR-HCD model of COVID-19 propagation in Novosibirsk region Eurasian J. Math. Comput. Appl. 10 51-1780
  • [10] Nagy Z.(1997)Long short-term memory Neural Comput. 9 1735-1958