Criteria of a multi-weight weak type inequality in Orlicz classes for maximal functions defined on homogeneous type spaces

被引:0
作者
S. Ding
Y. Ren
机构
[1] Henan University of Science and Technology,School of Mathematics and Statistics
来源
Acta Mathematica Hungarica | 2020年 / 162卷
关键词
weight; weak type inequality; Hardy–Littlewood maximal function; homogeneous type space; quasi-convex function; 42B25; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain some new necessary and sufficient conditions for a multi-weight weak type maximal inequality of the form ∫{x:Mf(x)>λ}φ(λω1(x))ω2(x)dμ≤c∫Xφ(cf(x)ω3(x))ω4(x)dμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{\{ {x: \mathcal {M} f(x) > \lambda } \}} {\varphi (\lambda {\omega _1}(x))} {\omega _2}(x) \,d\mu \le {c} \int _X \varphi ({c}f(x){\omega _3}(x)){\omega _4}(x) \,d\mu \end{aligned}$$\end{document}in Orlicz classes, where Mf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M} f$$\end{document} is a Hardy–Littlewood maximal function defined on homogeneous type spaces. Our main result extends some known results.
引用
收藏
页码:677 / 689
页数:12
相关论文
共 31 条
[1]  
Bagby RJ(1990)Weak bounds for the maximal function in weighted Orlicz spaces Studia Math. 95 195-204
[2]  
Beltran D(2019)Control of pseudodifferential operators by maximal functions via weighted inequalities Trans. Amer. Math. Soc. 371 3117-3143
[3]  
Bloom S(1994)Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator Studia Math. 2 149-167
[4]  
Kerman R(2019)Weighted mixed-norm inequality on Doob's maximal operator and John-Nirenberg inequalities in Banach function spaces Acta Math. Hungar. 157 408-433
[5]  
Chen W(2018)The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type Studia Math. 242 109-139
[6]  
Ho KP(1989)Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator Israel J. Math. 67 95-108
[7]  
Jiao Y(1994)Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces Georgian Math. J. 1 641-673
[8]  
Zhou D(2015)Characterizations of reverse weighted inequalities for maximal operators in Orlicz spaces and Stein's result Acta Math. Hungar. 147 354-367
[9]  
Cruz-Uribe D(2012)Weighted modular estimates for a generalized maximal operator on spaces of homogeneous type Collect. Math. 63 147-164
[10]  
Shukla P(2010)Maximal operators on variable Lebesgue spaces with weights related to oscillations of carleson curves Math. Nachr. 283 85-93