Ratios conjecture for quadratic Hecke L-functions in the Gaussian field

被引:0
|
作者
Peng Gao
Liangyi Zhao
机构
[1] Beihang University,School of Mathematical Sciences
[2] University of New South Wales,School of Mathematics and Statistics
来源
Monatshefte für Mathematik | 2024年 / 203卷
关键词
Ratios conjecture; Mean values; Quadratic Hecke ; -functions; 11M06; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the L-functions ratios conjecture with one shift in the numerator and denominator in certain ranges for the family of quadratic Hecke L-functions in the Gaussian field using multiple Dirichlet series under the generalized Riemann hypothesis. We also obtain an asymptotical formula for the first moment of central values of the same family of L-functions, obtaining an error term of size O(X1/2+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(X^{1/2+\varepsilon })$$\end{document}.
引用
收藏
页码:63 / 90
页数:27
相关论文
共 50 条
  • [41] On the Selberg orthogonality for automorphic L-functions
    Muharem Avdispahić
    Lejla Smajlović
    Archiv der Mathematik, 2010, 94 : 147 - 154
  • [42] Joint universality for dependent L-functions
    Łukasz Pańkowski
    The Ramanujan Journal, 2018, 45 : 181 - 195
  • [43] Nonvanishing of Dirichlet L-functions, II
    Rizwanur Khan
    Djordje Milićević
    Hieu T. Ngo
    Mathematische Zeitschrift, 2022, 300 : 1603 - 1613
  • [44] Moments of products of automorphic L-functions
    Milinovich, Micah B.
    Turnage-Butterbaugh, Caroline L.
    JOURNAL OF NUMBER THEORY, 2014, 139 : 175 - 204
  • [45] Central Value Of Automorphic L-Functions
    Ehud Moshe Baruch
    Zhengyu Mao
    GAFA Geometric And Functional Analysis, 2007, 17 : 333 - 384
  • [46] Low-lying zeros of quadratic Dirichlet L-functions: lower order terms for extended support
    Fiorilli, Daniel
    Parks, James
    Sodergren, Anders
    COMPOSITIO MATHEMATICA, 2017, 153 (06) : 1196 - 1216
  • [47] Moments of Derivatives of Modular L-Functions
    Kumar, Sumit
    Mallesham, Kummari
    Sharma, Prahlad
    Singh, Saurabh
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02) : 715 - 734
  • [48] Unified representation of the family of L-functions
    Hacer Ozden
    Yilmaz Simsek
    Journal of Inequalities and Applications, 2013
  • [49] Simple zeros of modular L-functions
    Milinovich, Micah B.
    Ng, Nathan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 1465 - 1506
  • [50] Integral mean values of modular L-functions
    Qiao, Z
    JOURNAL OF NUMBER THEORY, 2005, 115 (01) : 100 - 122