Ratios conjecture for quadratic Hecke L-functions in the Gaussian field

被引:0
|
作者
Peng Gao
Liangyi Zhao
机构
[1] Beihang University,School of Mathematical Sciences
[2] University of New South Wales,School of Mathematics and Statistics
来源
Monatshefte für Mathematik | 2024年 / 203卷
关键词
Ratios conjecture; Mean values; Quadratic Hecke ; -functions; 11M06; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the L-functions ratios conjecture with one shift in the numerator and denominator in certain ranges for the family of quadratic Hecke L-functions in the Gaussian field using multiple Dirichlet series under the generalized Riemann hypothesis. We also obtain an asymptotical formula for the first moment of central values of the same family of L-functions, obtaining an error term of size O(X1/2+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(X^{1/2+\varepsilon })$$\end{document}.
引用
收藏
页码:63 / 90
页数:27
相关论文
共 50 条
  • [31] THE MIXED SECOND MOMENT OF QUADRATIC DIRICHLET L-FUNCTIONS OVER FUNCTION FIELDS
    Djankovic, Goran
    Dokic, Dragan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 2003 - 2017
  • [32] On the argument of L-functions
    Emanuel Carneiro
    Renan Finder
    Bulletin of the Brazilian Mathematical Society, New Series, 2015, 46 : 601 - 620
  • [33] Hybrid Euler-Hadamard product for quadratic Dirichlet L-functions in function fields
    Bui, H. M.
    Florea, Alexandra
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 : 65 - 99
  • [34] Mixed moments of L-functions
    Meera Thillainatesan
    The Ramanujan Journal, 2006, 11 : 111 - 133
  • [35] On Selberg’s limit theorem for L-functions over a family of GL(n) Hecke–Maass cusp forms
    Guohua Chen
    Yuk-Kam Lau
    Yingnan Wang
    The Ramanujan Journal, 2022, 59 : 1171 - 1195
  • [36] The L-functions of Witt coverings
    Chunlei Liu
    Dasheng Wei
    Mathematische Zeitschrift, 2007, 255 : 95 - 115
  • [37] The derivative formula of p-adic L-functions for imaginary quadratic fields at trivial zeros
    Masataka Chida
    Ming-Lun Hsieh
    Annales mathématiques du Québec, 2023, 47 : 1 - 30
  • [38] Poles of L-functions on quaternion groups
    Çetin Ürtiş
    Chinese Annals of Mathematics, Series B, 2014, 35 : 519 - 526
  • [39] A note on the zeros of zeta and L-functions
    Emanuel Carneiro
    Vorrapan Chandee
    Micah B. Milinovich
    Mathematische Zeitschrift, 2015, 281 : 315 - 332
  • [40] Distinguishing L-functions by joint universality
    Jörn Steuding
    Lithuanian Mathematical Journal, 2021, 61 : 413 - 423