Mixed convection in four-sided lid-driven sinusoidally heated porous cavity using stream function-vorticity formulation

被引:0
作者
Shobha Bagai
Manoj Kumar
Arvind Patel
机构
[1] University of Delhi,Cluster Innovation Centre
[2] University of Delhi,Department of Mathematics, Faculty of Mathematical Sciences
来源
SN Applied Sciences | 2020年 / 2卷
关键词
Mixed convection; Four-sided lid-driven flow; Porous media; Finite difference method; Alternating-direction-implicit (ADI) method; 35Q79; 76S05; 80A20; 76M20;
D O I
暂无
中图分类号
学科分类号
摘要
This study presents the mixed convection inside a four-sided lid-driven square porous cavity whose right wall is maintained at a sinusoidal temperature condition, the left wall of the cavity is maintained at a cold temperature, while the top and the bottom walls are adiabatic. We have discussed two different cases depending upon the direction of the moving walls. Brinkmann-extended Darcy model is represented in terms of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} and ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} using the stream function-vorticity formulation to simulate the momentum transfer in the porous medium. This formulation is used to solve the governing equations as a coupled system of equations which consists of the field variables, vorticity (ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi )$$\end{document}, stream function (ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\psi )$$\end{document}, and temperature (T). The velocity components (u, v) are derived from the stream function (ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\psi )$$\end{document} whereas the average Nusselt number is derived from temperature. The stability and consistency of the applied numerical scheme to the considered problem has been proven by matrix method. The numerical results are investigated by ranging the various dimensionless numbers such as Grashof number (103≤Gr≤105)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(10^3 \le { {Gr}} \le 10^5)$$\end{document}, Darcy number (10-1≤Da≤10-5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(10^{-1} \le { {Da}} \le 10^{-5})$$\end{document}, Reynolds number (10≤Re≤1000)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(10 \le { {Re}} \le 1000)$$\end{document} and keeping the Prandtl number (Pr=0.7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({ {Pr}}=0.7)$$\end{document} fixed.
引用
收藏
相关论文
共 22 条
[1]  
Ambethkar V(2017)Numerical solutions of 2-d unsteady incompressible flow with heat transfer in a driven square cavity using stream function-vorticity formulation Int J Heat Technol 35 459-473
[2]  
Kumar M(2014)Four-sided lid-driven cavity flow using time splitting method of Adams–Bashforth scheme Int J Autom Mech Eng (IJAME) 9 1501-1510
[3]  
Azwadi CSN(2020)The four-sided lid driven square cavity using stream function-vorticity formulation J Appl Math Comput Mech 19 17-30
[4]  
Rajab A(2016)Mixed convection in a double lid-driven sinusoidally heated porous cavity Int J Heat Mass Transf 93 361-378
[5]  
Sofianuddin A(2013)Multiplicity flow solutions in a four-sided lid-driven cavity Appl Mech Mater 368–370 838-843
[6]  
Bagai S(1998)Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium Int J Heat Mass Transf 42 2465-2481
[7]  
Kumar M(2012)Multiple stable solutions for two-and four-sided lid-driven cavity flows using fas multigrid method Eng e-Trans 7 96-106
[8]  
Patel A(2009)Multiplicity of states for two-sided and four-sided lid driven cavity flows Comput Fluids 38 247-253
[9]  
Chattopadhyay A(2011)Numerical simulations of flow bifurcations inside a driven cavity CFD Lett 3 100-110
[10]  
Pandit SK(undefined)undefined undefined undefined undefined-undefined