On the Spectral Problem Lu=λu′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L} u=\lambda u'}$$\end{document} and Applications

被引:0
作者
Milena Stanislavova
Atanas Stefanov
机构
[1] University of Kansas,Department of Mathematics
关键词
Soliton; Eigenvalue Problem; Travel Wave Solution; Spectral Problem; Essential Spectrum;
D O I
10.1007/s00220-015-2542-2
中图分类号
学科分类号
摘要
We develop a general instability index theory for an eigenvalue problem of the type Lu=λu′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L} u=\lambda u'}$$\end{document}, for a class of self-adjoint operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} on the line R1. More precisely, we construct an Evans-like function to show (a real eigenvalue) instability in terms of a Vakhitov–Kolokolov type condition on the wave. If this condition fails, we show by means of Lyapunov–Schmidt reduction arguments and the Kapitula–Kevrekidis–Sandstede index theory that spectral stability holds. Thus, we have a complete spectral picture, under fairly general assumptions on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}. We apply the theory to a wide variety of examples. For the generalized Bullough–Dodd–Tzitzeica type models, we give instability results for travelling waves. For the generalized short pulse/Ostrovsky/Vakhnenko model, we construct (almost) explicit peakon solutions, which are found to be unstable, for all values of the parameters.
引用
收藏
页码:361 / 391
页数:30
相关论文
共 36 条
[11]  
Grimshaw R.(1978)Nonlinear internal waves in a rotating ocean Okeanologia 18 181-105
[12]  
Pelinovsky D.(2007)Explicit solutions of the reduced Ostrovsky equation Chaos Solitons Fractals 31 602-2654
[13]  
Hunter J.(2004)Propagation of ultra-short optical pulses in cubic nonlinear media Phys. D 196 90-13
[14]  
Kapitula T.(2012)Linear stability analysis for traveling waves of second order in time PDE’s Nonlinearity 25 2625-2617
[15]  
Kevrekidis P.G.(2013)Spectral stability analysis for special solutions of second order in time PDEs: the higher dimensional case Phys. D 262 1-204
[16]  
Sandstede B.(2010)Well-posedness and small data scattering for the generalized Ostrovsky equation J. Differ. Equ. 249 2600-1464
[17]  
Kapitula T.(2006)On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons Chaos Solitons Fractals 28 193-63
[18]  
Stefanov A.(1998)The two loop soliton solution of the Vakhnenko equation Nonlinearity 11 1457-undefined
[19]  
Morrisson A.J.(2005)The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations Chaos Solitons Fractals 25 55-undefined
[20]  
Parkes E.J.(undefined)undefined undefined undefined undefined-undefined