On the Spectral Problem Lu=λu′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L} u=\lambda u'}$$\end{document} and Applications

被引:0
作者
Milena Stanislavova
Atanas Stefanov
机构
[1] University of Kansas,Department of Mathematics
关键词
Soliton; Eigenvalue Problem; Travel Wave Solution; Spectral Problem; Essential Spectrum;
D O I
10.1007/s00220-015-2542-2
中图分类号
学科分类号
摘要
We develop a general instability index theory for an eigenvalue problem of the type Lu=λu′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L} u=\lambda u'}$$\end{document}, for a class of self-adjoint operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} on the line R1. More precisely, we construct an Evans-like function to show (a real eigenvalue) instability in terms of a Vakhitov–Kolokolov type condition on the wave. If this condition fails, we show by means of Lyapunov–Schmidt reduction arguments and the Kapitula–Kevrekidis–Sandstede index theory that spectral stability holds. Thus, we have a complete spectral picture, under fairly general assumptions on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}. We apply the theory to a wide variety of examples. For the generalized Bullough–Dodd–Tzitzeica type models, we give instability results for travelling waves. For the generalized short pulse/Ostrovsky/Vakhnenko model, we construct (almost) explicit peakon solutions, which are found to be unstable, for all values of the parameters.
引用
收藏
页码:361 / 391
页数:30
相关论文
共 36 条
[1]  
Boyd J.(2005)Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal waves (corner and near-corner waves) Eur. J. Appl. Math. 16 65-81
[2]  
Bruneau V.(2008)Lieb–Thirring estimates for non-self-adjoint Schrödinger operators J. Math. Phys. 49 093504-503
[3]  
Ouhabaz E.M.(1977)Polynomial conserved densities for the sine-Gordon equations Proc. R. Soc. A 352 481-436
[4]  
Bullough R.K.(2010)Count of eigenvalues in the generalized eigenvalue problem J. Math. Phys. 51 052901-566
[5]  
Dodd R.K.(2012)The reduced Ostrovsky equation: integrability and breaking Studies Appl. Math. 129 414-316
[6]  
Chugunova M.(2014)Global existence of small-norm solutions in the reduced Ostrovsky equation Discrete Contin. Dyn. Syst. 34 557-282
[7]  
Pelinovsky D.(1990)Numerical solutions of some nonlinear dispersive wave equations Lect. Appl. Math 26 301-211
[8]  
Grimshaw R.(2004)Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems Phys. D 195 263-1437
[9]  
Helfrich K.(2014)A Hamiltonian–Krein (instability) index theory for KdV-like eigenvalue problems Studies Appl. Math. 132 183-191
[10]  
Johnson E.R.(1999)The N loop soliton solutions of the Vakhnenko equation Nonlinearity 12 1427-610