共 38 条
[1]
Ingrand F., Ghallab M., Deliberation for autonomous robots: a survey, Artif Intell, 247, pp. 10-44, (2017)
[2]
Minguez J., Lamiraux F., Laumond J.-P., Motion planning and obstacle avoidance, Handbook of Robotics, pp. 1177-1202, (2016)
[3]
Mohanan M., Salgoankar A., A survey of robotic motion planning in dynamic environments, Robot Auton Syst, 100, pp. 171-185, (2018)
[4]
Zhang W., Wei S., Teng Y., Zhang J., Wang X., Yan Z., Dynamic obstacle avoidance for unmanned underwater vehicles based on an improved velocity obstacle method, Sensors, 17, 12, (2017)
[5]
Zhou D., Wang Z., Bandyopadhyay S., Schwager M., Fast, on-line collision avoidance for dynamic vehicles using buffered Voronoi cells, IEEE Robot Autom Lett, 2, 2, pp. 1047-1054, (2017)
[6]
Rosmann C., Hoffmann F., Bertram T., Integrated online trajectory planning and optimization in distinctive topologies, Robot Auton Syst, 88, pp. 142-153, (2017)
[7]
Kahn G., Villaflor A., Ding B., Abbeel P., Levine S., Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1-8, (2018)
[8]
Silver D., Schrittwieser J., Simonyan K., Antonoglou I., Huang A., Guez A., Hubert T., Baker L., Lai M., Bolton A., Et al., Mastering the game of go without human knowledge, Nature, 550, 7676, pp. 354-359, (2017)
[9]
Vinyals O., Babuschkin I., Czarnecki W.M., Mathieu M., Dudzik A., Chung J., Choi D.H., Powell R., Ewalds T., Georgiev P., Et al., Grandmaster level in starcraft II using multi-agent reinforcement learning, Nature, 575, 7782, pp. 350-354, (2019)
[10]
Levine S., Pastor P., Krizhevsky A., Ibarz J., Quillen D., Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, Int J Robot Res, 37, 4-5, pp. 421-436, (2018)