Effect of filler metal composition on microstructural and mechanical characterization of dissimilar welded joint of nitronic steel and super duplex stainless steel

被引:30
作者
Maurya, Anup Kumar [1 ]
Pandey, Chandan [1 ]
Chhibber, Rahul [1 ]
机构
[1] IIT Jodhpur, Dept Mech Engn, Jodhpur 342037, Rajasthan, India
关键词
Nitronic steel; Super duplex stainless steel; Solidification; Microstructure; Dissimilar welded joint; Mechanical properties; PERFORMANCE; AUSTENITE; BEHAVIOR;
D O I
10.1007/s43452-022-00413-9
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The present paper experimentally investigates the effect of filler metal on the mechanical behavior, solidification, and microstructure of the super duplex stainless steel (sDSS2507) and nitronic steel (N50) dissimilar welded joint. This dissimilar joint is primarily applicable in the subsea control unit for high-pressure tubing and coupler assembly. For this investigation, the gas tungsten arc welding process (GTAW) employed the super duplex filler ER2594 and carbon steel grade ER70S-2 filler. The weld's structural integrity has been assessed to compare both the fillers through multiple investigations on the joint. The microstructure characterization of the base metal and as-welded specimen was carried out using an optical microscope (OM) and scanning electron microscope (SEM). Super duplex filler ER2594 weld solidified in primary ferritic mode with precipitation of several reformed austenite in the ferrite matrix, whereas ER70S-2 filler weld had long martensite laths embedded in ferrite matrix. The microstructural study reported the presence of microsegregation and Type II boundary formation. The type-II boundary is detected close to the fusion boundary at the N50 and the sDSS 2507 side of the ER70S-2 weldment. The Vickers microhardness test, Charpy impact test, and the tensile test were performed to obtain the mechanical properties of this joint. The microhardness investigation of the weld zone of ER2594 and ER70S-2 shows the average hardness of 287.34 +/- 10 Hv(0.5) and 372.36 +/- 10 Hv(0.5), respectively. The peak hardness of 410 Hv(0.5) was observed in the weld zone of ER70S-2. The formation of large martensite laths in the ferrite matrix in the weld zone leads to higher hardness in ER70S-2 filler compared to the precipitation of softer reformed austenite in the ER2594 filler. The average impact toughness result of ER2594 and ER70S-2 is 165 +/- 5 J and 110 +/- 8 J, respectively. The Charpy impact trials showed the ductile fracture mode by employing ER2594 filler, while ER70S-2 showed the mixed fracture mode (ductile-brittle). The weldment tensile strength of filler ER2594 and ER70S-2 is 897 MPa and 873 MPa, respectively. The tensile test results indicate the ductile fracture mode for both fillers, and the failures were detected in sDSS2507.
引用
收藏
页数:28
相关论文
共 50 条
[21]   Texture, microstructure and mechanical properties of laser beam welded AISI 2507 super duplex stainless steel [J].
Kose, Ceyhun ;
Topal, Ceyhun .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 289
[22]   Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR [J].
Wang, Shaogang ;
Ma, Qihui ;
Li, Yan .
MATERIALS & DESIGN, 2011, 32 (02) :831-837
[23]   Microstructural stability and mechanical properties of a high nitrogen super duplex stainless steel [J].
Nilsson, JO ;
Kangas, P ;
Karlsson, T ;
Wilson, A .
HIGH NITROGEN STEELS '98, 1999, 318-3 :751-756
[24]   Metallurgical and mechanical characterization of electron beam welded super-duplex stainless steel UNS 32750 [J].
Ramkumar, K. Devendranath ;
Mishra, Debidutta ;
Vignesh, M. K. ;
Raj, B. Ganesh ;
Arivazhagan, N. ;
Naren, Shah Vitesh ;
Kumar, S. Suresh .
JOURNAL OF MANUFACTURING PROCESSES, 2014, 16 (04) :527-534
[25]   Microstructural evolution and mechanical integrity relationship of dissimilar metal welding between 2205 duplex stainless steel and composite bimetallic plates [J].
Ye, Changqing ;
Zhai, Weiguo ;
Lu, Guangyao ;
Liu, Qingsong ;
Ni, Liang ;
Ye, Liang ;
Fang, Xiao .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (23) :7033-7044
[26]   Effect of Filler Si content on the Microstructure and Properties of Underwater Hyperbaric Welded Duplex stainless steel [J].
Hu, Yu ;
Shi, Yonghua ;
Sun, Kun ;
Shen, Xiaoqin .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2020, 279
[27]   Mechanical Properties of Laser Welded 2205 Duplex Stainless Steel [J].
Kose, Ceyhun ;
Kacar, Ramazan .
MATERIALS TESTING, 2014, 56 (10) :779-785
[28]   Mechanical Properties and Microstructural Characterization of Laser Welded S32520 Duplex Stainless Steel [J].
Abdo, Hany S. ;
Seikh, Asiful H. .
MATERIALS, 2021, 14 (19)
[29]   Microstructure and corrosion resistance of dissimilar welded joints between duplex stainless steel and austenitic stainless steel [J].
Wang, Shaogang ;
Li, Yan ;
Zhai, Weiguo .
ADVANCED MATERIALS FOR APPLIED SCIENCE AND TECHNOLOGY II, 2012, 570 :43-51
[30]   The effect of welded joint properties on the surface characteristics of laser-welded 2205 duplex stainless steel [J].
Hu, Shanshan ;
Zheng, Dongrui ;
Zhao, Guolin ;
Li, Guangliang ;
Tang, Hongqun .
ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (09)