Nonsemisimple Macdonald polynomials

被引:0
|
作者
Ivan Cherednik
机构
[1] UNC,Department of Mathematics
来源
Selecta Mathematica | 2009年 / 14卷
关键词
Primary 33D80; Secondary 33D52; Double affine Hecke algebra; Macdonald polynomials; affine Weyl groups;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is mainly devoted to the irreducibility of the polynomial representation of the double affine Hecke algebra for an arbitrary reduced root system and generic “central charge” q. The technique of intertwiners in the nonsemisimple variant is the main tool. We introduce the Macdonald nonsemisimple polynomials and use them to analyze the reducibility of the polynomial representation in terms of the affine exponents, counterparts of the classical Coxeter exponents. The focus is on principal aspects of the technique of intertwiners, including related problems of the theory of reduced decomposition in affine Weyl groups and semisimple submodules of the polynomial representation.
引用
收藏
页码:427 / 569
页数:142
相关论文
共 50 条
  • [21] Orthogonality of Macdonald polynomials with unitary parameters
    van Diejen, J. F.
    Emsiz, E.
    MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (1-2) : 517 - 542
  • [22] Orthogonality of Macdonald polynomials with unitary parameters
    J. F. van Diejen
    E. Emsiz
    Mathematische Zeitschrift, 2014, 276 : 517 - 542
  • [23] Recurrence formulas for Macdonald polynomials of type A
    Lassalle, Michel
    Schlosser, Michael J.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (01) : 113 - 131
  • [24] Recurrence formulas for Macdonald polynomials of type A
    Michel Lassalle
    Michael J. Schlosser
    Journal of Algebraic Combinatorics, 2010, 32 : 113 - 131
  • [25] c-functions and Macdonald polynomials
    Colmenarejo, Laura
    Ram, Arun
    JOURNAL OF ALGEBRA, 2024, 655 : 163 - 222
  • [26] A Littlewood–Richardson rule for Macdonald polynomials
    Martha Yip
    Mathematische Zeitschrift, 2012, 272 : 1259 - 1290
  • [27] Creation Operators for the Macdonald and Jack Polynomials
    LUC Lapointe
    LUC Vinet
    Letters in Mathematical Physics, 1997, 40 : 269 - 286
  • [28] Matrix product formula for Macdonald polynomials
    Cantini, Luigi
    de Gier, Jan
    Wheeler, Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (38)
  • [29] A New Recursion in the Theory of Macdonald Polynomials
    Garsia, A. M.
    Haglund, J.
    ANNALS OF COMBINATORICS, 2012, 16 (01) : 77 - 106
  • [30] Creation operators for the Macdonald and Jack polynomials
    Lapointe, L
    Vinet, L
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 40 (03) : 269 - 286