Dirichlet problem for axisymmetric potential fields in a disk of the meridian plane. I

被引:0
作者
S. A. Plaksa
机构
[1] Ukranian Academy of Sciences,Institute of Mathematics
关键词
Dirichlet Problem; Potential Field; Absolute Constant; Flow Function; Meridian Plane;
D O I
10.1007/BF02515397
中图分类号
学科分类号
摘要
We develop new methods for the solution of boundary-value problems in the meridian plane of an antisymmetric potential solenoidal field with regard for the nature and specific features of axisymmetric problems. We determine the solutions of the Dirichlet problems for an axisymmetric potential and the Stokes flow function in a disk in an explicit form.
引用
收藏
页码:564 / 585
页数:21
相关论文
共 9 条
[1]  
Mel’nichenko I. P.(1996)Potential fields with axial symmetry and algebras of monogenic functions of a vector variable. I Ukr. Mat. Zh. 48 1518-1529
[2]  
Plaksa S. A.(1996)Potential fields with axial symmetry and algebras of monogenic functions of a vector variable. II, Ukr. Mat. Zh. 48 1695-1703
[3]  
Mel’nichenko LP.(1997)Potential fields with axial symmetry and algebras of monogenic functions of a vector variable. III, Ukr. Mat. Zh. 49 228-243
[4]  
Plaksa S. A.(1972)An analog of the Poisson formula for certain second-order equations with singular line, Dokl. Akad. Nauk Tadzh. SSR 15 6-9
[5]  
Mel’nichenko I. P.(1974)Construction of potentials and investigation of inner and outer boundary-value problems of Dirichlet and Neumann types for the Euler-Poisson-Darboux equations on a plane, Dokl. Akad. Nauk Tadzh. SSR 17 7-11
[6]  
Plaksa S. A.(undefined)undefined undefined undefined undefined-undefined
[7]  
Mikhailov L. G.(undefined)undefined undefined undefined undefined-undefined
[8]  
Radzhabov N.(undefined)undefined undefined undefined undefined-undefined
[9]  
Radzhabov N.(undefined)undefined undefined undefined undefined-undefined