On automorphism groups of Hardy algebras

被引:0
作者
Rene Ardila
机构
[1] Grand Valley State University,Department of Mathematics
来源
Annals of Functional Analysis | 2020年 / 11卷
关键词
Hardy algebra; Automorphism group; -correspondence; Morita equivalence; 39B82; 44B20; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a W∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{*}$$\end{document}-correspondence and let H∞(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\infty }(E)$$\end{document} be the associated Hardy algebra. The unit disc of intertwiners D((Eσ)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}((E^{\sigma })^{*})$$\end{document} plays a central role in the study of H∞(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\infty }(E)$$\end{document}. We show a number of results related to groups of automorphisms of both H∞(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\infty }(E)$$\end{document} and D((Eσ)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}((E^{\sigma })^{*})$$\end{document}. We find a matrix representation for these groups and describe several features of their algebraic structure. Furthermore, we show an application of Aut(D((Eσ)∗))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Aut(\mathbb {D}({(E^{\sigma }})^*))$$\end{document} to the study of Morita equivalence of W∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{*}$$\end{document}-correspondences.
引用
收藏
页码:1170 / 1183
页数:13
相关论文
共 27 条
[21]  
Muhly PS(undefined)undefined undefined undefined undefined-undefined
[22]  
Solel B(undefined)undefined undefined undefined undefined-undefined
[23]  
Paschke WL(undefined)undefined undefined undefined undefined-undefined
[24]  
Popescu G(undefined)undefined undefined undefined undefined-undefined
[25]  
Taylor JL(undefined)undefined undefined undefined undefined-undefined
[26]  
Voiculescu D(undefined)undefined undefined undefined undefined-undefined
[27]  
Voiculescu D-V(undefined)undefined undefined undefined undefined-undefined