On automorphism groups of Hardy algebras

被引:0
作者
Rene Ardila
机构
[1] Grand Valley State University,Department of Mathematics
来源
Annals of Functional Analysis | 2020年 / 11卷
关键词
Hardy algebra; Automorphism group; -correspondence; Morita equivalence; 39B82; 44B20; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a W∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{*}$$\end{document}-correspondence and let H∞(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\infty }(E)$$\end{document} be the associated Hardy algebra. The unit disc of intertwiners D((Eσ)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}((E^{\sigma })^{*})$$\end{document} plays a central role in the study of H∞(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\infty }(E)$$\end{document}. We show a number of results related to groups of automorphisms of both H∞(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\infty }(E)$$\end{document} and D((Eσ)∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}((E^{\sigma })^{*})$$\end{document}. We find a matrix representation for these groups and describe several features of their algebraic structure. Furthermore, we show an application of Aut(D((Eσ)∗))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Aut(\mathbb {D}({(E^{\sigma }})^*))$$\end{document} to the study of Morita equivalence of W∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{*}$$\end{document}-correspondences.
引用
收藏
页码:1170 / 1183
页数:13
相关论文
共 27 条
[1]  
Ardila R(2019)Morita equivalence of Complex Anal. Oper. Theory 13 2411-2441
[2]  
Davidson KR(1998)-correspondences and their Hardy algebras Integr. Eq. Oper. Theory 31 321-337
[3]  
Pitts DR(1998)Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras Math. Ann. 311 275-303
[4]  
Davidson KR(2009)The algebraic structure of non-commutative analytic Toeplitz algebras Linear Algebra Appl. 430 869-889
[5]  
Pitts DR(2012)Singularities of rational functions and minimal factorizations: the noncommutative and the commutative setting Multidimens. Syst. Signal Process. 23 49-77
[6]  
Kaliuzhnyi-Verbovetskyi DS(2004)Noncommutative rational functions, their difference-differential calculus and realizations J. Mayh. Phys. 45 932-946
[7]  
Vinnikov V(2004)Pseudounitary operators and pseudounitary quantum dynamics Math. Ann. 330 353-415
[8]  
Kaliuzhnyi-Verbovetskyi DS(2008)Hardy algebras, Doc. Math. 13 365-411
[9]  
Vinnikov V(2009)-correspondences and interpolation theory Complex Anal. Oper. Theory 3 221-242
[10]  
Mostafazadeh A(2011)Schur class operator functions and automorphisms of Hardy algebras NY. J. Math. 17A 87-100