A class of degenerate stochastic differential equations with non-Lipschitz coefficients

被引:0
作者
K SURESH KUMAR
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
来源
Proceedings - Mathematical Sciences | 2013年 / 123卷
关键词
Degenerate SDEs; non-Lipschitz coefficients; comparison theorems;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain sufficient condition for SDEs to evolve in the positive orthant. We use arguments based on comparison theorems for SDEs to achieve this. As an application we prove the existence of a unique strong solution for a class of multidimensional degenerate SDEs with non-Lipschitz diffusion coefficients.
引用
收藏
页码:443 / 454
页数:11
相关论文
共 22 条
[1]  
Athreya S(2002)Degenerate stochastic differential equations and super-Markov chains Probab. Theory Relat. Fields 123 484-500
[2]  
Barlow MT(2002)Degenerate stochastic differential equations with hölder continuous coefficients and Super-Markov chains Trans. AMS 355 373-405
[3]  
Bass RF(2002)No arbitrage condition for positive diffusion processes Asia-Pacific Financial Markets 9 159-168
[4]  
Perkins EA(2005)A study of a class of stochastic differential equations with non-Lipschitzian coefficients Probab. Theory Relat. Fields 132 356-390
[5]  
Bass RF(2003)A survey and some generalizations of Bessel processes Bernoulli 9 313-349
[6]  
Perkins EA(1974)On some estimates of the distribution of stochastic integrals Izv. Akad. Nank SSSR Ser. Math. 38 228-248
[7]  
Delbaen F(1969)Diffusion processes with continuous coefficients, I, II Commun. Pure Appl. Math. 22 345-400
[8]  
Shirakawa H(2002)Pathwise uniqueness for a SDE with non-Lipschitz coefficients Stoch. Proc. Appl. 98 131-149
[9]  
Fang S(1979)On the strong solutions and explicit formulas for solutions of stochastic differential equations Math. USSR Sbornit. 39 387-401
[10]  
Zhang TA(1971)On the uniqueness of stochastic differential equations J. Math Kyoto Univ. 11 155-167